filtrate under reduced pressure. X remained as a colorless liquid, $n^{20} \mathrm{D}$ 1.5210.

A methiodide, m.p. $169-171^{\circ}$, of X was formed in isobuty methyl ketone and recrystallized from acetone-isubutyl methyl ketone. A mixture of this material with the lower melting methiodide prepared by method b melted at $170-172^{\circ}$.
(b) From α-1,3-Dimethyl-4-phenyl-4-cyanoazacycloheptane (XI) by Decyanation.-A mixture of 0.337 mole (76.8 g .) of XI^{14} and 0.74 mole (28.9 g .) of sodamide in 500 ml . of toluene was heated at reflux while stirring for 6 hr . The cooled mixture was washed with water, then extracted with dilute hydrochloric acid. The acid extract was washed with ether, made basic with sodinm hydroxide solution and extracted with ether. The ether extract was dried over anhydrous potassium carbonate, filtered, and distilled. Compound X was obtained as a colorless liquid, b.p. $03-95^{\circ}$ (0.2 mun.), $n^{31} \mathrm{D} 1.5251$; yield 55.6 g (81.1%).

Anal. Caled. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}: ~ \mathrm{C}, 82.70 ; \mathrm{H}, 10.40 ; \mathrm{N}$, i...8. Found: C, 82.40; H, 10.35; N, 6.60 .
The higher melting methiodide, m.p. 199-201 ${ }^{\circ}$, was formed in acetone and purified by digesting with boiling aretone.

- nal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{IN}: ~ \mathrm{C}, 52.20 ; \mathrm{H}, 7.00 ; \mathrm{I}, 36.75 ; \mathrm{N}$, 4.06. Found: C, $51.96 ; \mathrm{H}, 6.81 ; \mathrm{I}, 36.6 ; \mathrm{N}, 4.42$.

The lower melting methiodide, m.p. 171-173 ${ }^{\circ}$, was obtained by fractional (innentration of the mother liqum from the higher melting methiodide.
Anal. Caled. for $\mathrm{C}_{65} \mathrm{H}_{24} \mathrm{IN}: ~ \mathrm{G}, 52.20 ; \mathrm{H}, 7.00 ; 1,36 . \pi \bar{n}$; N, 4.06. Fomid: (, 52.17: H, $7.14 \mathrm{I}, 36.45 ; \mathrm{N}, 4.38$.

Acknowledgment. - We are indebted to Mr. (arl Gochman for excellent technical assistance and to Dr. Gordon Ellis and associates for the microanalyses.

Pyrrolidines. IX. 3-Aryl-3-pyrrolidinols

William A. Gould, Paul M. Lish, Yao-Hea We, Herbertr R. Roth, Walter G. Lobeck, Jr., James M. Berdahl, ani Rollani I'. Feldkimp
Mead Johnson Research Center, Evanstille, Indiamu

Receivent July 20, 196.3

Abstract

3-Aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters were hydrolyzed and decarboxylated in the presence of : strong base to produce 3 -aryl-3-pyrrolidinols. These substances exhibited central nervous system stimulant activity and smooth muscle depressant action variously selective for smooth nuscle of the bronchioles, uterus, gut, and the coronary and peripheral vascular system.

In general, useful autonomic drugs of the phenylalkanolamine type meet three criteria: (1) the aromatic nucleus and the nitrogen atom are separated by two carbon atoms; (2) the hydroxyl group is substituted on the carbon atom of the benzyl position; (3) the nitrogen atom is substituted by at least one hydrogen atom. ${ }^{1.2}$ During the investigation of the

syntheses of 3-aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters (II) ${ }^{3}$ and 3 -acyloxy-3-aryl-1-methyl pyrrolidines (III), ${ }^{4}$ we found that 3 -aryl-3-pyrrolidinols (IV) that feature these three structural requirements could be produced.

(1) R. A. McLean, in "Medicinal Chemistry," A. Burger, ľl.. Intersuience Prblishers. Inc., New York, N. Y., 1960, p. 592.
(2) R. B. Barlow. "Introduction to Chemical Pharmacology," John Wiley \& Sons. Inc., New York, N. Y.. 1955. p. 231.
(3) Y. H. Wu. W. A. Gould, W. G. Lobeck, Jr., H. R. Roth, and R. F. F'eldkamp, J. Med, I'harm. Chem., 5, 752 (1962).
(4) Y. H. Wu, W. G. Lobeek, Jr., inl R. F. Fellkamp, ibid., 5, 7 b 2 (1062).

This report is primarily concerned with the syntheses and pharmacological properties of these 3 -aryl-3. pyrrolidinols. ${ }^{5}$

Chemistry.-The preparation of 3 -aryl-3-pyrrolidinols (IV) was effected by an alkaline hydrolysis and decarboxylation of 3-aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters (II). Hydrolysis under both acidic ${ }^{6}$ and basic ${ }^{7}$ conditions for the removal of the protective N-alkoxycarbonyl group are known in the literature. In the present work, acid hydrolysis was not attempted because of the unstable nature of these tertiary alcohols under acidic conditions. ${ }^{8}$ Kuhn and Osswald ${ }^{9}$ prepared D, L-allo-hydroxyproline by refluxing diethyl 4-hydroxy-1.2-pyrrolidinedicarboxylate with 10% aqueous barium hydroxide for 3 hr . This procedure was used successfully for the preparation of 3-phenyl-3-pyrrolidinol, 3 -(2-thienyl)-3-pyrrolidinol, and 2-methyl-3-phenyl-2-pyrrolidinol. However, for the last compound, a $30-\mathrm{hr}$. reflux time was required for a satisfactory yield. Exidently substituents in the 2and \bar{j}-positions of the pyrrolidine ring sterically hinder the hydrolysis of the ethoxycarbonyl group. This became more apparent in the hydrolysis of ethyl $2,5-$ dimethyl-3-phenyl-3-hydroxy-1-pyrrolidinecarboxylate. Using equal volumes of ethanol and 56% aqueous potassium hydroxide and a 6 -hr. reflux time, 2,5 -di-
(b) 1'wis reports on syntlusis if N-sibstituted 3-aryl-3-pyrrolidinols liave been published. Reference to two N-unsubstituted compounds were niade in these publications. These pyrrolidinols were prepared by thy: lydrogenolysis of the corresponding N-benzyl compoumls. (a) C, D. Linsford, 1:. S. Patent 2.878.264 (March 17, 1959) (3-phenyl-3-pyrrolidinol): (b) J. T. Cavalla, R. A. Adwas, J. Wax, L.. Scotti, und C. V. Winder. J. Med. Pharm. Chem., 5, 441 (1919) (e-nlethyl-3-phenyl-3-1)yrrolidinol).
(0) P. Ruggli, H. Steiger, and 1'. Schobel, Hur. Chim. Acta, 28, 3n3 (1!15).
i7) W. R. Biggerstaff and .1. L. Wihls. J. Am. Chem. Soc., 71, 2132 (1940).
(8) Aeil delyylration of 3-aryl-3-1 y droxy-1-1,yrrolidinecarboxylic acin csters was found to occur without significant hydrolysis and decarboxylation of the alkoxytarbonyl group.
(9) R. Kuln and G. Osswall, Chem. Ber., 89, 1423 (1951).

Table I

Substituted Acrylic Actds and Esters, $\mathrm{R}_{2} \mathrm{CH}=\mathrm{CHCOOR}$

No.	R	R_{2}	M.p. or b.p. ${ }^{\circ} \mathrm{C}$. (mm.)	$\begin{gathered} \text { Yield, } \\ \% \end{gathered}$	Ref.
1	H	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	103-113 (6)	67	a
2	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	61-64 (6)	68	b
3	H	3-Cyclohexenyl	50-52	50	c
4	$\mathrm{C}_{2} \mathrm{H}_{5}$	3-Cyclohexenyl	130-135 (15)	84	d
5	H	3.4-Methylenedioxyphenyl	225-230	71	-
6	$\mathrm{C}_{2} \mathrm{H}_{5}$	3.4-Methylenedioxyphenyl	63.5-66.5	94	f

${ }^{\circ}$ A. A. Goldberg and R. P. Linstead, J. Chem. Soc., 2343 (1928). ${ }^{b}$ R. P. Linstead, ibid., 2498 (1929). " Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{2}$: C, $71.02 ; \mathrm{H}, 7.95$. Found: C, $71.13 ; \mathrm{H}, 8.07$. Recrystallized from aqueous ethanol. ${ }^{a}$ Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 73.30; H, 8.95. Found: C, 73.11; H, 8.88. ${ }^{e}$ R. D. Hayworth, W. H. Perkin, Jr., and J. Rankin, J. Chem. Soc., 125, 1686 (1924). ${ }^{r}$ W. Feuerstein and M. Heimann, Ber., 34, 1468 (1901).
methyl-3-phenyl-3-pyrrolidinol was obtained in 2% yield; a longer reflux time (24 hr .) resulted in a 10% yield. Using equal volumes of 1 -propanol and 56% aqueous potassium hydroxide to which additional potassium hydroxide was added (50 g . per 100 ml . of 1-propanol) and a 20 hr . reflux time, a yield of 68% was obtained. These conditions were used as the general procedure for the hydrolysis and decarboxylation of ethyl 3-aryl-3-hydroxy-1-pyrrolidinecarboxylates to give 3-aryl-3-pyrrolidinols in good to excellent yields.
ladium-on-carbon produced ethyl 3-(4-hydroxyphenyl)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate (Table III, 4). Alkylation of this material with 4-chlorobenzyl chloride yielded ethyl 3-[4-(4-chlorobenzyloxy)phenyl]-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate (Table III, 5).

Experimental ${ }^{10}$

Substituted Acrylic Acids and Their Ethyl Esters (Table I)These substances were prepared in a manner analogous to that previously reported. ${ }^{3}$

Ethyl 3-Oxo-1-pyrrolidinecarboxylates (I) (Table II).-The general procedures of our earlier work ${ }^{3}$ were used.

Ethyl 3-Aryl-3-hydroxy-1-pyrrolidinecarboxylates (II) (Table III). A and B.-Arylmagnesium halides were reacted with ethyl 3-oxo-1-pyrrolidinecarboxylates in ether (procedure A) or tetrahydrofuran (procedure B) as previously described. ${ }^{3}$

Grignard Reagents.-The Grignard reagents were prepared from the appropriate halides in the conventional manner. Most of the halides are commercially available; 4 -benzyloxybromobenzene, ${ }^{11} 3$-benzyloxybromobenzene, ${ }^{3}$ 3,4-isopropylidenedioxybromobenzene, ${ }^{12}$ and 4-methylthiochlorobenzene ${ }^{13}$ were prepared according to reported procedures.
C. Ethyl 3-(4-Hydroxyphenyl)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate. - A mixture of 9.0 g . (0.025 mole) of ethyl 3-(4-benzyloxy)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate, ${ }^{3}$ 0.5 g . of 10% palladium-on-carbon, 5 ml . of glacial acetic acid, and 250 ml . of ethanol was hydrogenated ${ }^{14}$ at $3.5 \mathrm{~kg} . / \mathrm{cm} .{ }^{2}$ pressure and at room temperature until 0.025 mole of hydrogen was absorbed. The mixture was filtered and the filtrate concentrated at reduced pressure. The residue was dissolved in 200 ml . of

Table II
Ethyl 3-Oxo-1-pyrrolidinecarboxylates

No.	R_{1}	R_{2}
1	H	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$
2	H	3-Cyclohexenyl
3	H	3,4-Methylenedioxyphenyl
4	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$

B.p.. ${ }^{\circ} \mathrm{C} .(\mathrm{mm}$.
$85-86(10)$
$132-142(0.2)$
$145-150(0.1)$
$114-116(0.1)$

Yield,	Molecular
$\%$	Formula
14	$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3}$
33	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$
10	$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{5}$
16	$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}$

Caled.	Found
$\mathbf{7 . 0 3}$	6.99
5.90	6.06
5.06	4.96
5.67	5.49

The preparation of a number of 3-aryl-3-hydroxy-1pyrrolidinecarboxylic acid esters has been reported earlier. ${ }^{3}$ Additional intermediates were prepared similarly. Four additional 3-oxo-1-pyrrolidinecarboxylic acid esters (I) were prepared by the modification ${ }^{3}$ of the method of Kuhn and Osswald. ${ }^{9}$ N-Ethoxycarbonylamino acid esters and substituted acrylic acid esters were allowed to react in the presence of sodium hydride to yield diethyl 4-oxo-1,3-pyrrolidinedicarboxylic acid esters. After partial hydrolysis and decarboxylation of these substances, 3-oxo-1-pyrrolidinecarboxylic acid esters were formed. Their physical properties and chemical analyses are recorded in Table II. The 3-aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters (II) not recorded in our previous publication ${ }^{3}$ were synthesized by reaction of arylmagnesium halides with 3-oxo-1pyrrolidinecarboxylic acid esters (I). These aryl compounds are listed in Table III. In a number of instances, the isolated materials were very viscous oils and no analytical data were obtained. These substances, not included in Table III, were also converted to 3-aryl-3-pyrrolidinols.

Hydrogenolysis of ethyl 3-(4-benzyloxyphenyl)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate ${ }^{3}$ with pal-
ether and washed with a saturated sodium bicarbonate solution. The ethereal solution was then extracted with a 10% aqueous sodium hydroxide solution. The alkaline extract was washed with ether, cooled, and acidified with 10% hydrochloric acid. The precipitated oily solid was extracted into ether and the ethereal solution dried over anhydrous magnesium sulfate. The ethereal solution was filtered and the filtrate evaporated at reduced pressure. The residue was mixed with 35 ml . of cold isopropyl ether and filtered; yield, $5.0 \mathrm{~g} .\left(75 \%\right.$); m.p. $12 \overline{7}-132^{\circ}$.
D. Ethyl 3-[4-(4-Chlorobenzyloxy)phenyl]-3-hydroxy-2-methyl-1-pyrrolīdinecarboxylate.-A mixture of 7.3 g . (0.027 mole) of the preceding compound, 4.4 g . (0.027 mole) of 4 -chlorobenzyl chloride, 3.75 g . (0.027 mole) of anhydrous potassium carbonate, and 10 ml . of acetone was stirred and refluxed for 5 hr. The mixture was cooled and transferred to a separatory funnel containing 200 ml . of water and 200 ml . of ether. The ethereal layer was separated and washed with 10% aqueous sodium hydroxide solution and then with water. The ethereal solution was dried over anhydrous magnesium sulfate, filtered,

[^0]

Table III: Fimyl, 3-Aryl-3-Mybroxy-1-pyrbolidinecarboxylaten
:had evapurated at rednced pressure. lhee residne was triturated with 25 ml. of isopropy ether and filtered; yield 7.5 g. (102 ,); 11.p. $1421+4^{\circ}$.

3-Aryl-3-pyrrolidinols. A.-.-A minture of 0.1 molle of : 3 -irry-3. hydroxy-1-pyrolidinecarboxylic acid ester, 50 mb. if $n-p$ noperl
 (0) I atomons potassion hydroxide sulation was stirred amb
 was sepmatatel and dilnted tar foo bed. With isoproper othor. After washing the sulntion with water and drving nver anhydrume magnesimm sulfinte, the solntinn was filtered and nentralized with ethamble hydregen dharide. The prectipitate was mellected an : filter and recerstallized from the appropriate solventesi. If a precipitate was finmed mpon ronding, the reaction mintmere was dilnted t_{1}, zoon mal. with water and filtered. The solid was washed with wator amd idriod. After aerestalization from a soitable sulvent, the hydrudhloride ar benzade sult wis prepared in :cre aleolinlin: solintion,
B. 3-Hydroxyphenyl-3-pyrrolidinols. --A mixture of 0.025

 pressure and at ronnt tenperature mitil 0.025 noble of hydregen Whe absurbed. The mixture was filtered and the filtrate evaporated at reduced pressure. The residne was reerystallized frima a suitable solvent.
C. 3-(4-Chlorophenyl)-5-cyclohexyl-3-pyrrolidinol Hydrochloride. \cdots A minture of 7.3 g . (0.023 nole) of 3 -(4-rhlorophenyl)-
 mom oxide and 150 mil. of methanol was hedrogenated at 3.5 kg ./ coo." pressmes and at roon temperatmre motil the mandated annonnt of hedrogen was adsurbed. The mixtmre was filtered and the filtrane vaporated at rednced pressure ' Ther residne

Pharmacology

Methods. Effects on Smooth Muscle Studies in Vitro.... Cortain tissnes were remmed from the gninea pig, rat, and rabibit and snspended in oxygenated physiological solutions maintained at comtrolled constant temperatire. Movements of the smonth bustle uf the isolated tissues were recorded kymographically by way of attachment ol the tisene th isotnnic gravity writing levers. Test procednres emphyying these ismated tissnes were lor the most part conventional and have leen described in provions reports frim this laboratory. ${ }^{15,14}$

Effects on Mean Blood Pressure of Anesthetized Dogs.-Dogs were anesthetized with barbital (275 ng. $/ \mathrm{kg}$. I.V.) and :urranged fir kymographic recording of intracarotid blood pressure. The rontponds were administered intravenonsly in isutomic saline solntinn throngh an indwelling polyethylene catheter in the fentoral vein at a constant rate of 2.0 mg. $/ \mathrm{kg}$. / min.
Vascular Effects.-Femoral and coronary blood flow were reeorded frons mesthetized (barbital 275 mig. kg . I.V.) digs by means of a Shiplev-Milson rotaneter. Perfnsion of the left descending ramus of the left cormary artery was married ont maing hond from the carotid artery. In both the femomal and the ("ronary bhod flow preparations. drng injections were male intraarterially through the ont pat arm of the flowmetor.

The perfnsed isolated rabhit heart preparation was (andncted nsing the classical Langendorf prinedire as modified by Anlersion and Craver, In some of the isolated rabbit heart preparations, the coronary arteries were artilicially (instricten by adding is units of vasopressin to 1.5 l. of the pertusion fluid.

Bronchodilator Activity in Viro.-Asthma-like attacks were induced in guinea pigs by subjecting the animals, in a closed spray (hamber, to an aerosol of 1.0); histamine diphosphate. ${ }^{16}$ The guinea pigs were remned from the chamber immediately following signs of dyspnea or cinghing, and re-exposed $2-4$ hr. later, after treatment with a test agent. Thns, each animal served as its 1) Wh control. Seven t_{1} twelve animma were nsed for each dosage level of a test agent. The time from the begiming of exposure to the onset of symptums was termed the "pre-dyspneic interval."

[^1]Standard deviation for mean pre-dyspneic intervals by these criteria is usually no greater than $10-15 \%$ of the mean. The effectiveness of a test agent in extending the pre-dyspneic interval was determined at its time of peak effect after subcutaneous administration.

Acute Lethal Effect in Mice.-Graded doses of the test compounds were administered by the specified route (oral or subeutaneous) in at least 3 groups of at least 5 mice per dose. The mice were observed over the 24 hr . interval following drug administration. Approximate lethal dosage for half the animals $\left(\mathrm{ALD}_{50}\right)$ was estimated graphically from the log dose-percentage death relationships.

Results

Initial survey of the activities of 3-aryl-3pyrrolidinols revealed that many of them possessed general smooth muscle inhibitory activities apparently not dependent on blockade of the neurohumor normally responsible for a tropic influence on the tissue tested. For example, the compounds possessed no particular blocking selectivity against histamine, acetylcholine, or l-norepinephrine, yet spasms induced by these physiologic agents, as well as spasms induced by nonphysiologic substances, such as barium chloride were similarly inhibited. Sympathomimetic action, if involved at all, was not primarily responsible for the smooth muscle actions. The activity of the pyrrolidinols on intestinal smooth muscle, tracheal smooth muscle, and the smooth muscle of the accessory sex organs of the male and female rat are shown in Table V. It is necessary to keep in mind that sympathomimetics such as epinephrine, norepinephrine, and phenylephrine cause contraction of the seminal vessel but are potent inhibitors of the rat uterus.

Some of the compounds (e.g., 2, 8, 10, 13) had pressor effects on the mean blood pressure of the anesthetized dog; some of them (e.g., 32, 44, 46) were depressors. Some increased and some decreased the activity of exogenous l-epinephrine. Similarly, some slightly increased and some slightly decreased the heart rate. The effects of the pyrrolidinols on the mean blood pressure of the anesthetized dog, and the acute toxicity in mice are summarized in Table V.

Most of the pyrrolidinols produced weak stimulant effects in mice such as that seen following administration of ephedrine. Signs of a sympathomimetic nature such as exophthalmus, piloerection, and partial mydriasis were sometimes observed. Hypnotic effects, reflex blocking effects, or signs of neuromuscular impairment were seen only at near lethal dosage.

Secondary Evaluations.-Selected compounds were tested for smooth muscle inhibitory action or vasodilator action in vivo. Compounds having dominant central nervous system (CNS) stimulant effects were characterized by studying their ability to antagonize hypnosis induced by chloral hydrate or pentobarbital in mice.

Bronchiolar Smooth Muscle.-Several compounds displayed important bronchodilator action in vivo. In this test compounds $4,10,44$ and 47 b in vivo were similar in potency to aminophylline and ephedrine, and possessed greater margin between effective dosage and dosage causing CNS effects than ephedrine or aminophylline (see Table VI).

Vascular Smooth Muscle-A number of 3-aryl-3pyrrolidinols were studied for their activity on the vascular bed supplied by the femoral artery in the dog, the isolated rabbit heart, and the dog coronary arterial
bed. Several compounds induced significant coronary vasodilation in both the dog heart preparation in vivo and in the isolated rabbit heart preparation. Certain pyrrolidinols, compounds 10,23 , and 35 a showed selectivity for dilation of the coronary arteries of the dog in that they constricted the vessels of the femoral bed. Compound 50c had no effect on the femoral bed but dilated the coronary bed of the dog (see Table VII).

In the isolated rabbit heart preparation the pyrrolidinols depressed cardiac contractile force. However, there was no correlation between the degree of cardiac depression and the magnitude of the coronary flow increase. Furthermore, the compounds caused little, if any, depression of the dog heart in vivo.

Central Nervous System (CNS) Effects.-Six pyrrolidinols were tested for ability to antagonize chloral hvdrate-induced hypnosis in mice. Compounds 23, 44, 69, and 72 administered in subcutaneous dosage at approximately one-fourth the LD_{50} failed to decrease chloral hydrate-induced sleeping time. Compounds 57 and 66 at subcutaneous dosage of $50 \mathrm{mg} . / \mathrm{kg}$. and 8 $\mathrm{mg} . / \mathrm{kg}$., respectively, significantly reduced sleeping time. These compounds could not, however, reduce the hypnosis caused by pentobarbital in mice. These and similar tests indicated that the central nervous system actions of the 3-aryl-3-pyrrolidinols tested resembled the action of ephedrine rather than that of the more specific CNS stimulants such as amphetamine.

Discussion

A number of generalizations regarding the struc-ture-activity relationships of 3-aryl-3-pyrrolidinols can be discerned from the pharmacological data.

Substitution of alkyl groups in the 2 - and 5 -positions of the pyrrolidine ring resulted in increased toxicity and CNS stimulation. Introduction of cycloalkyl and aryl groups into the 5 -position likewise increased the toxicity, but was associated with increased smooth muscle depressant activity.

Generally, increased pharmacological activity was associated with substitution in the 3 -phenyl ring. Most compounds containing a phenolic hydroxyl group showed an increased pressor response.

Introduction of a halogen atom into the 3-phenyl ring resulted in increased smooth muscle depressant activity and increased duration of action. This was especially true for 4 -chloro and 4 -bromo derivatives. Compounds 10,44 , and 47 b showed increased bronchodilator activity, whereas compound 72 showed increased intestinal smooth muscle depressant activity. Significant coronary vasodilator activity was associated with 3,4-dichlorophenyl derivatives, especially when the pyrrolidine ring was substituted in the 5 -position (73b).

Introduction of large groups, such as benzyloxy and phenoxy, into the 3-phenyl ring produced significant coronary vasodilator activity (50c) and intestinal smooth muscle depressant activity (35a).

Other substituents in the 3 -phenyl ring, such as alkyl, alkoxy, and alkylthio, had no significant effect on the pharmacological activity of the 3-aryl-3-pyrrolidinols.

Apparently the incorporation of the phenylaikanolamine structure into the pyrrclidine ring produced

3-Aryi-3-byrrondinols

41a	CH_{3}	H	$4-\mathrm{CH}_{3} \leqslant \mathrm{C}_{6} \mathrm{H}_{4}$		157－159		57	A	$\mathrm{Cl}_{2} \mathrm{ILI}_{17} \mathrm{NOS}$					6.27	6.30			$\stackrel{H}{6}$
41b	CH_{3}	H	$4-\mathrm{CH}_{3} \mathrm{SC}_{6} \mathrm{H}_{4}$	HCl	204．5－206．5 dec．	s	75		$\mathrm{Cr}_{2} \mathrm{H}_{17} \mathrm{NOS} \cdot \mathrm{IICl}$	55.47	55.51	6.99	6.86	5.39	5.56	13.56	13.66	E
42	CH_{3}	II	$4-\mathrm{C}_{6} \mathrm{HI}_{6} \mathrm{C}_{6} \mathrm{H}_{4}$	HCl	250－251 dec．	g	55	A	$\mathrm{Cr}_{77} \mathrm{H}_{19} \mathrm{NO} \cdot \mathrm{HCl}$	70.45	70.48	6.96	6.98	4.83	4.90	12.24	12.37	5
43	H	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	HCl	152．5－154	－	74	A	$\mathrm{C}_{1} \mathrm{H}_{16} \mathrm{NO} \cdot \mathrm{HCl}$	61.81	62.30	7.55	7.79			16.59	17.04	家
44	H	CH_{3}	$4-\mathrm{ClC6H}_{4}$	1 Cl	179－181	${ }^{e}$	59	A	$\mathrm{C}_{11} \mathrm{H}_{49} \mathrm{ClNO} \cdot \mathrm{HCl}$	53.24	53.16	6.09	6.12			14.29	14.31	
45	H	CH_{3}	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	HCl	158－160	e	79	A		53.24	53.35	6.09	6.06			14.29	14.32	$\stackrel{\square}{\square}$
46	H	CH_{3}	$2-\mathrm{ClC}_{6} \mathrm{H}_{4}$	HCl	203－205 dec．	f	79	A	$\mathrm{C}_{11} \mathrm{H}_{44} \mathrm{ClNO} \cdot \mathrm{HCl}$	53.24	53.19	6.09	（5．15）			14.29	14.22	8
47a	11	CH_{3}	4－ $\mathrm{BrC}_{6} \mathrm{H}_{4}$		141－143	e	73	A	$\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{Br}^{\text {BrNO}}$	51.55	51.75	5.51	5.56	5.49	5.50			
47b	H	CH_{3}	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	HCl	204．5－205．5 dec．	e	95		$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrNO} \cdot \mathrm{HCl}^{\text {a }}$	45.15	45.20	5.16	5.29	4.78	4.90			
48	II	CH_{3}	4． $\mathrm{FC}_{6} \mathrm{H}_{4}$	HCl	145－147	e	60	A	$\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{FNO} \cdot \mathrm{IIC1}$	57.02	56.93	（5．52	6.61			15.30	15.15	
49	1 H	CH_{3}	$3.4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	HCl	191－192	${ }^{e}$	90	A	$\mathrm{C}_{1} \mathrm{H}_{3} \mathrm{Cl}_{2} \mathrm{NO} \cdot \mathrm{HCl}^{\text {l }}$	46.75	46.75	4.99	4.99			12.55	12.54	
50a	H	CH_{3}	4－ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}$		160－162	b	65	A	$\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}$	76.27	76.31	7.47	7.53	4.96	4.86			
50 b	II	CH_{3}	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ClH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}$	Benzoate	167－169	＊	93		$\mathrm{C}_{1 \times} \mathrm{H}_{21} \mathrm{NO}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$	74.05	74.10	6.71	6.83	3.45	3.59			
50 c	H	CH_{3}	$4-\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{II}_{4}$	HCl	182－182．5 dec．	${ }^{e}$	71		$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2} \cdot \mathrm{HCl}$	67.59	67.61	6.93	7.03	4.38	4.46	11.09	11.35	
51	H	CH_{3}	4－110C6 ${ }^{1} \mathrm{I}_{4}$	HCl	207－209 dec．	f	40	B	$\mathrm{C}_{11} \mathrm{IH}_{16} \mathrm{NO}_{2} \cdot 1 \mathrm{HCl}$	57.50	57.76	7.02	7.27	6.10	6.09	15.44	15.46	
52	$\mathrm{C}_{2} \mathrm{H}_{5}$	H1	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	248．5－249 dee．	c	6_{6}	A	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO} \cdot \mathrm{HCl}$	63.28	63.56	7.97	7.52			15.57	15.40	
53	$\mathrm{C}_{2} \mathrm{H}_{6}$	H	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	HCl	235－236．5 dec．	\bullet	80	A	$\mathrm{C}_{12} \mathrm{H}_{6} \mathrm{ClNO} \cdot \mathrm{HCl}$	54.97	55.13	6.54	6.64			13.52	13.47	
54	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	4－ $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}$	Benzuate	163－165	${ }^{\text {c }}$	73	A	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{2} \cdot \mathrm{C}_{7} 1 \mathrm{I}_{6} \mathrm{O}_{2}$	74.44	73.88	6.97	6.89	3.34	3.31			
55	$\mathrm{C}_{2} \mathrm{H}_{5}$	H	$4-\mathrm{HOC}_{6} \mathrm{I}_{4}$	Benzoate	174．5－176．5 dec．	\bullet	95	B	$\mathrm{C}_{12} \mathrm{H}_{47} \mathrm{NO}_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$	69.28	69.17	7.04	7.05	4.25	4.13			
56	H	$\mathrm{C}_{2} 1 \mathrm{I}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	187－188	＊	80	A	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO} \cdot \mathrm{HCl}$	63.28	63.26	7.97	8.09	6.11	5.98			
57	H	$\mathrm{C}_{2} \mathrm{H}_{5}$	4－ClC6 ${ }^{\text {H }}$	HCl	173－175	${ }^{\circ}$	86	A	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClNO} \cdot \mathrm{HICl}$	54.96	55.06	6.54	6.55	5.34	5.31	13.53	13.73	
58	II	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	226．5－227．5 dec．	0	48	A	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO} \cdot \mathrm{HCl}$	64.57	64.67	8.34	8.30	5.79	5.81	14.66	14.90	
59	H	$\left(\mathrm{CH}_{8}\right)_{2} \mathrm{CH}$	${ }^{4-\mathrm{ClC}_{6} \mathrm{H}_{4}}$	HCl	206．5－207．5 dec．	${ }^{\circ}$	35	A	$\mathrm{Ch3}_{3} \mathrm{H}_{1} \mathrm{ClNO} \cdot \mathrm{HCl}$	56.53	56.45	6.93	7.02	5.08	5.11	12.83	13.16	
60	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	232．5－233．5 dec．	－	68	A	$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO} \cdot \mathrm{HCl}$	63.28	63.22	7－97	7.54			15.57	15.44	
${ }_{61}$	CH_{3}	CH_{3}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	IICl	251－252 dec．	${ }^{e}$	84	A	$\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{Cl} \mathrm{Cl}^{\text {NO}} \cdot \mathrm{HICl}$	54.97	55.32	6.54	6.62	5.34	5.31			
62	CH_{3}	CH_{3}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	IICI	222．5－224．5 dec．	f	46	A	$\mathrm{C}_{12} \mathrm{H}_{66} \mathrm{ClNO} \cdot \mathrm{HCl}$	54.97	54.91	6.54	6.47	5.34	5.46			
63	CH_{3}	CH_{3}	$4-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OC}_{6} \mathrm{H}_{4}$	HCl	248．5－249 duc．	${ }^{\text {a }}$	61	A	$\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2} \cdot \mathrm{HICl}$	68.35	68.55	7.25	7.53	4.20	4.30	10.62	10.60	
64	CH_{3}	CH_{3}	4－ $\mathrm{HOC}_{6} \mathrm{H}_{4}$	HCl	221．5－223 dec．	f	69	B	$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{NO}_{2} \cdot \mathrm{IICl}$	59.13	58.85	7.44	7.43	5.75	5.82			
65	$\mathrm{C}_{2} \mathrm{H}$ b	CH_{3}	$\mathrm{C}_{6} \mathrm{IH}_{6}$	HCl	269．5－270 dec．	＂	65	A	$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO} \cdot \mathrm{HCl}$	64.60	64.80	8.34	7.76			14.67	14.67	
66	$\mathrm{C}_{2} \mathrm{H}_{6}$	CH_{3}	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	IICl	276－276．5 dec．	f	42	A	$\mathrm{C}_{3} \mathrm{II}_{12} \mathrm{Cl}^{\text {d }} \mathrm{NO} \cdot \mathrm{TICl}$	56.53	56.65	6.93	7.07	5.07	5.02			－8
67	H	3－Cycloliexenyl	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	232．5－233．5 dec．	f	26	A	$\mathrm{C}_{66} \mathrm{H}_{21} \mathrm{NO} \cdot \mathrm{HCl}$	08.68	68.67	7.93	7.97	5.01	5.02			d
（68	H	3－Cyclohexenyl	$4-\mathrm{ClC}_{6} \mathrm{IH}_{4}$	HCl	252．5－253 dec．	1	37	A	$\mathrm{C}_{66} \mathrm{H}_{20} \mathrm{ClNO} \cdot \mathrm{HCl}$	61.15	61.12	6.74	6.82			11.28	11.42	0
69	H	$\mathrm{C}_{6} \mathrm{H}_{11}$	$\mathrm{C}_{6} \mathrm{I}_{5}$	HCl	226．5－227 dec．	${ }^{\text {d }}$	47	A	$\mathrm{C}_{66} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{HICl}$	68.18	68.00	8.58	8.46	4.97	4.79			\bigcirc
70	II	$\mathrm{C}_{6} \mathrm{II}_{11}$	4－ $\mathrm{ClC}_{6} \mathrm{H}_{4}$	HCl	252．5－253 dec．	，	95	C	$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClNO} \cdot \mathrm{HCl}$	60.76	60.62	7.33	7.08	4.43	4.45	11.21	11.22	旬
71	II	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	207－208 dec．	f	47	A	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO} \cdot \mathrm{HCl}$	69.69	70.14	6． 58	6.78			12.86	12.50	容
72	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$4-\mathrm{CIC}_{6} \mathrm{IH}_{4}$	HCO	204－205 dce．	g	85	A	$\mathrm{C}_{66} \mathrm{H}_{16} \mathrm{ClNO} \cdot \mathrm{HCl}$	61.94	61.87	5.52	5.59			11.43	11.14	易
73a	H	$\mathrm{C}_{6} \mathrm{H}_{6}$	$3{ }^{4} 4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$		157－159	e	74	Λ	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}$	62．35	62.37	4.91	4.99	4.55	4.60			\because
73b	H	$\mathrm{C}_{6} \mathrm{H}_{6}$	$3.4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	1 Cl 1	201－203 dec．	f	95		$\mathrm{C}_{16} \mathrm{H}_{16 \mathrm{Cl}}^{2} \mathrm{NO} \cdot \mathrm{HCl}$	55.75	55.70	4.68	4.68	4.06	4.07	10.29	10.23	
74a	H	$\mathrm{C}_{6} \mathrm{II}_{5}$	$3-\mathrm{H}_{3} \mathrm{CCC}_{6} \mathrm{H}_{4}$		147－149	e	78	A	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO}$	66.45	66.47	5.25	5.09	4.56	4.52			N
74 b	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	$3-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}$	HCl	203－204．5 dec．	－	77		$\mathrm{Cr}_{7} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{NO} \cdot \mathrm{HCl}$	59.39	59.43	4.98	5.12	4.07	3.98	10.32	10.45	A
75	CH_{3}	$\mathrm{C}_{66} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	HCl	275－276 dec．	e	62	A	$\mathrm{C}_{77} \mathrm{H}_{19} \mathrm{NO}^{\mathrm{NO}} \cdot \mathrm{H} \mathrm{HCl}$	70.45	70.59	6.95	7.30	4.83	4.89	12.24	12．44	
76 a	H	$4-\mathrm{ClC}_{6} \mathrm{II}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$		160－162	c	88	A	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}$	70.20	70.22	5.89	5.99	5.11	5.21			
76 b	H	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	IICl	207－207．5 dec．	${ }^{\text {e }}$	90		$\mathrm{C}_{66} \mathrm{H}_{66} \mathrm{ClNO} \cdot \mathrm{HCl}$	61.94	61.88	5.52	5.49	4.52	4.51	11.43	11.47	
77	11	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	HCl	204－204．5 dec．	f	67	A	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO} \cdot \mathrm{HCl}$	55.75	55.84	4.68	4.67			10.29	10.06	
78	H	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{6}$	HCl	164－166 dec．	${ }^{\text {c }}$	95	A	$\mathrm{C}_{77} \mathrm{H}_{89} \mathrm{NO}_{2} \cdot \mathrm{HCl}$	66.77	66.79	6.59	6.62			11.60	11.55	
79a	H	$3.4-\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$		150－152	＊	95	A	$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3}$	72.07	71.81	6.05	5.97	4.94	4.94			
79 b	H	$3.4-\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{6} \mathrm{II}_{5}$	HCl	215－216 dec．	c	92		$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{3} \cdot \mathrm{HCl}$	63.84	63.64	5.67	5.97	4.38	4.04	11.09	11.20	
80a	H	$3.4-\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$		161－162	e	75	A	$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{3}$	（64．25）	64.40	5.07	5.04	4.41	4.47			
80 b	H	$3.4-\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$4-\mathrm{ClC}_{6} 1 \mathrm{I}_{4}$	IICl	215－216．5 dec．	c	99		$\mathrm{Cr}_{77} \mathrm{H}_{16} \mathrm{ClNO}_{3} \cdot \mathrm{HCl}$	57.63	57.65	4.84	5.16	3.96	3.95	10.01	10.06	

Tabme：「
Resclits of Pharmacological Soreening of Some 3－Aryl－3－1yrrolmiatols

No．	－ALD） Dose． tug．kg．		Effect of 1 Hipan bloed pressure		Arrenersie blockin： ict (in) Rar somintul	Smoot fureress lnlibitition o as suontaneo TAnines pig triclie： 	nuscle astivity ormal tonus nontrantions Rat ntorns． 1Csmem．	$\begin{aligned} & \text { Sntispasn } \\ & \text { Rabbit } \\ & \text { ileun } \\ & \text { cs. } \mathrm{BaCl} \\ & \mathrm{TC} \gamma / \mathrm{ml} \text {. } \end{aligned}$	odic action－ Coninea pis ileninl s ． listamine， IC76 $\%$ ； 111 ．${ }^{\text {．}}$
1	625	O_{14}	1.0	$+20$		\％	c		
2	375	$\therefore \mathrm{A}$	1．1）	$\pm: 80$	2881	：0， 0	Yali	>40	
3	1625	Oral	3． 1	＋－19		＂			
4	（2）	\therefore A．	1．1）	$+90$	16）1	201	860	>00	（1．）
5	（2）	\therefore S．	0.5	－${ }^{-1}$	11	4816	300	>20	17.0
6	14．5	\therefore ，	5． 0	＋） 1	$1:$	נso	450	>00	18.0
7	817	\therefore A．	1．0－5．0	-1750	1！（1）	（11）	2910	>40	
8	1500	Sr．	－3． 0	$+2.4$		$>1101)$	1000	>40	
9	85	Sr．	3.0	＋111	（11	$\underline{2}$ 20，	300	>20	5：
10		A．	1.0	$+\because 5$	is	：1	100	>20	1.1
11	10：0）	Se．	1.11	＋1．	3.5	19\％）	1280	>90	4.19
1：3	\％）	Si．	1.0	$\div 40$	28	11100	450	1：8	12.0
1.4	1095	\therefore 吅。	B． 0	$=10$	40.5		>1000	$>+10$	
15	4\％	\therefore A．	2.5	＋1．5	TH1	1800	13：0）	>411	
18			0.1	$+20$		，	4		
19	>2000	\therefore A．	0.4	＋30	＞80	>1600	130）	>20	
90	750	$\therefore \cdots$	$\therefore 0$	＋12（ -8 ）		>96000	300	>40	
21	1100	Oral	1.0	$+1.2$		，			
22			1.11	$+10$		4	\cdot		
2：	205	S．0．	1.0	＋18	129	141	260	>90	1． 6
94	i	Are	2.0	＋25	105	190	360	>20	14.0
05			5.0	$+4$		136	370		
$2 ;$	102	sic．	1.0	$+8$	1：4	：15	340	>20	8.2
27	188	s．e．	1.0	-14	36	¿0	88	>20	3.9
28	1990	S．e．	1.0	＋18	81	1 HiO	（540	>20	14． 5
$2!$			1.0	$+:$			－		
30	320	So．	5－10	－－ $10-18)$	135	1600	－10	>40	
31			5． 0	＋10		${ }^{1}$	－		
32	32：	\therefore St	10.0	-19	4.5	>1600	>1000	>40	
33	140）	\therefore S．	5． 0	－5	3610	>1600	>4000	>40	
31	8.9	\therefore ¢，	10.0	－5i + ＋ 6	33	3（1）	37	5． 4	3 3．1
$35 a$	>1000	St．	S． 0	$+10$		270	8.5	5． 8	
311	1330	\therefore	1.0	-10	25.5	（40）	$3: 3$	12.0	
31			0.5	$+18$		，	170		
88			0.05	＋30		\％	，		
； 9			0.5	-20		D	11		
10.4			1.0	－5			125		
（11）			5． 0	－5i\％i		\％ 0	180		
42	>1000	\therefore	1.0	－19	T	35	， 9	12.0	
（1）	87.5	Oral	1.0	＋11		4			
4.	370	s．e．	－5． 0	-00	11 i	17.5	410	＞20	${ }^{0} .88$
4.5	300	\therefore－	5.0	-15	－3	400	310	>20	1.08
4，：			10.0	-25		1：00）	1		
4il）	260	Si．	1－i	± 10	1.8	（10）	>1000	>40	0.30
48	750	\therefore	－-10	± 5	50	>1600	>1000	>40	
491	211	\therefore St，	$1 \cdots 0$	-6.91 ）	22.5	（130）	（1）	＋0．0	
50e	（20）	\therefore ¢，	1.1	\cdots	［11．．．	230	（1）． 4	13.1	）18．
51			1.0	$+30$		Si：	$1!1$		
51			F． 0	$+10$		＂	\％		
53	340	Se．	Fit	－－116	120	330	1：01	>40	
（i）	130．5	\therefore ，	5.11	－20，	80	>1100	＞ 2200	>90	
Ii	330	S\％．	if	-20		$>1: 00$	1990	$>+10$	
87	293	\therefore ．	$\therefore 0$	-10		1500	240	$>$（1）	
is	29.5	\therefore A．	$\therefore 10$	－8	10\％	>2000	>1000	>10	
$\square 1$	295	$\therefore \cdots$	－1：1	-19	？	$81:$	910	（i，1）	11.11
（1）	ifi）	0 O 1	） 14	＋8					
$1: 1$	180	Ar	1.1	－18	（4）	－30	30	$>+10$	
109	190）	\therefore	5.9	－	113	－80		>10	
1i；			， 0	＋ 90		ij	）		
1.4			1.11	＋2		＇	（9）		
10.5			10．0	－90			－		
（11）	130	\therefore S．	，i	\pm	4．7）	7i：	T	>20	
ai	911	A．f．	1） 0	－－3；	45	：\％	｜1．il	3.0 .1	
dis	215	Oral	11）	－－． 1.7	3.7	81	20	． 0	
1：）	as	\therefore 右。	$\therefore 0$	－-	！ 7	190	12	33．0	5.1
i）			2.0	－．${ }^{\text {a }}$		：11	28		
i）	6.1	Oral	$\therefore 0$	－ 3		711	16．：		
－2	11：	$\therefore \times$	1.11	－－ 30		129	（1）	（6．）	）． 3
；：1．	1897	\therefore S．	3.11	-119	－． 1	3.50		$\bigcirc .7$	$\because 7$
： 11	110）	\therefore 为	$\therefore 1$	$-7+20 \%$	$8: 1$	2.51	\cdots	）： 11	$\because 7$
8			）1）	-10		Stil	11.7		
［1：1）	25：）	\therefore \％	50	－ 3	a	200	（4）	12.8	
ir			10） 0	－－		501	15		
is	21：	\therefore	）：	－1：	125	：30	s）	>20	45
－19，			111	－ 10		115	1i．）		
80%	11.5	\therefore S	i 0	－ 111	2：	138	）：	11.0	

Table V (Continued)

${ }^{a}$ Maximal increase (t) or decrease (-) in mean blood pressure (mm .). ${ }^{b}$ Concentration in bath fluid causing the stipulated per cent decrease in spasm or inherent activity; values interpolated from \log concentration-response curves representing 2-5 trials each of $2-4$ concentrations. ${ }^{c}$ Stimulated the smooth muscle under test. ${ }^{d}$ No effect. © Ephedrine is unable to produce $75 \% / \%$ decrease in the tonus of the tracheal spiral; $1.0 \mathrm{\gamma} / \mathrm{ml}$. causes maximal reduction ($c a .50 \%$).

Table VI
Broychodilator Action of Some 3-Aryl-3-pyrrolidinols 1. the Histamine Aerosol Test

No.	Approximate subcutaneous dosage (mg./kg.) effecting 100 second increase in pre-dyspneic interval ${ }_{1}$ ($\mathrm{ED}_{1 \times}$ sec.)	Remarks
4	60	No CAS effects below 120 mg. /kg.
10	40	No CNS effects below 80 mg . $/ \mathrm{kg}$.
34	>80	No CNS effects at $80 \mathrm{mg} . / \mathrm{kg}$.
39	>90	No CNS effects at $90 \mathrm{mg} . / \mathrm{kg}$.
42	>80	No CNS effects at $80 \mathrm{mg} . / \mathrm{kg}$.
44	30	No CNS effects below 120 mg. $/ \mathrm{kg}$.
47b	30	No CNS effects below 100 mg . $/ \mathrm{kg}$.
50 c	>40	No CNS effects at $40 \mathrm{mg} . / \mathrm{kg}$.
59	>80	Convulsions at $80 \mathrm{mg} . / \mathrm{kg}$.
68	>80	No CNS effects at $80 \mathrm{mg} . / \mathrm{kg}$.
72	>20	Convulsions at $20 \mathrm{mg} . / \mathrm{kg}$.
73 b	>40	No CNS effects at $40 \mathrm{mg} . / \mathrm{kg}$.
74b	20	Convulsions at $20 \mathrm{mg} . / \mathrm{kg}$.
Ephedrine	40	CNS effects at $10 \mathrm{mg} . / \mathrm{kg}$. and higher
Aminophylline	60	CNS effects at $80 \mathrm{mg} . / \mathrm{kg}$. and higher

substances with little or no sympathomimetic action. However, the 3-aryl-3-pyrrolidinols did exhibit smooth muscle depressant action similar to that associated with phenylalkanolamines in which the nitrogen atom is substituted with larger alkyl ${ }^{18}$ or aralkyl groups. ${ }^{15}$ This smooth muscle depressant action was variously selective for the smooth muscle of the bronchioles,
(18) A. M. Lands. E. E. Rickards, V. L. Nash, and K. Z. Hooper, J. Pharmacol. Exptl. Therap.. 89, 297 (1947).

Table VII
Vasclelar Actions of Some 3-Aryl-3-pyrrolidinols

No.	Increased coronary flow in isolated rabbit heart. $\%$ aminophylline ${ }^{a}$	Increased blood flow through femoral artery-anesthetized dog. \% aminophylline ${ }^{b}$	Increased blood flow through coronary vascular bedanesthetized dog. \% aminophylline ${ }^{c}$
10	100	Constrictor	80
20	<20	Biphasic 50	Not tested
23	80	Constrictor	24
27	200	Constrictor	Not tested
31	100	Constrictor	Flow decreased
34	300	Not tested	Not tested
35 a	200	Constrictor	41
36	200	Constrictor	Not tested
44	80	Constrictor	Not tested
49	120	Constrictor	Not tested
50 c	500	Noactivity	200
53	100	Constrictor	Not tested
55	No activity	Constrictor	Not tested
56	No activity	Not tested	Not tested
58	No activity	No activity	Not tested
67	120	50	Not tested
68	400	50	500
72	300	50	Not tested
73 b	2000	100	250
75	20	50-100 Biphasic (Dilator first)	Not tested
78	300	100	Not tested
79 b	350	500	Not tested
80b	800	50	350

${ }^{a}$ Total perfused dosage of aminophylline causing 50% maximal effect $=2.0 \mathrm{mg}$. ${ }^{b}$ Total perfused dosage of aminophylline causing 50% maximal effect $=0.4 \mathrm{mg}$. ${ }^{c}$ Total perfused dosage of aminophylline causing 50% maximal effect $=0.6 \mathrm{mg}$.
uterus, gut, and the coronary and peripheral vascular system.

[^0]: (10) Melting points are corrected and were obtained by Mrs. M. E. Coates using a Thomas-Hoover U'nimelt capillary melting point apparatus. Microanalytical data were provided by Spang Microanalytical Laboratory. Ann Arbor, Michigan, and Mr, C. I. Kennedy of the Control Laboratory, Mead Johnson Research Center.
 (11) S. G. Powell and R. Adams, J. Am. Chem. Soc.. 42, 6.57 (192' .
 (12) G. Sloof, Rec. Trav. Chim.. 54, 995 (1935).
 (13) K. Brand and W. Groebe, J. Prakt. Chem.. 108, 1 (1924).
 (14) The authors are indebted to Mr. R. R. Covington for his assistance in performing the liydrogenation experinents.

[^1]: Therup., 129. 191 (1460).
 (16) K. W. Whiquat and 1'. M. Lish, f. Allergy, 32, 130 (1961).

 1i) F. F, Anderson and B. N. Craver, J. Pharmacol. Exptl. Therip. 93. 135 (1948).

