filtrate under reduced pressure. X remained as a colorless liquid, $n^{20}D$ 1.5210.

A methiodide, m.p. $169-171^{\circ}$, of X was formed in isobutyl methyl ketone and recrystallized from acetone-isobutyl methyl ketone. A mixture of this material with the lower melting methiodide prepared by method **b** melted at $170-172^{\circ}$.

(b) From α -1,3-Dimethyl-4-phenyl-4-cyanoazacycloheptane (XI) by Decyanation.—A mixture of 0.337 mole (76.8 g.) of XI¹⁴ and 0.74 mole (28.9 g.) of sodamide in 500 ml. of toluene was heated at reflux while stirring for 6 hr. The cooled mixture was washed with water, then extracted with dilute hydrochloric acid. The acid extract was washed with ether, made basic with sodium hydroxide solution and extracted with ether. The ether extract was dried over anhydrous potassium carbonate, filtered, and distilled. Compound X was obtained as a colorless liquid, b.p. 93-95° (0.2 mm.), n^{31} D 1.5251; yield 55.6 g. (81.1%). Anal. Caled. for $C_{14}H_{21}N$: C, 82.70; H, 10.40; N, 5.88. Found: C, 82.40; H, 10.35; N, 6.60.

The higher melting methiodide, m.p. 199-201°, was formed in acetone and purified by digesting with boiling acetone.

Anal. Calcd. for $C_{18}H_{24}IN$: C, 52.20; H, 7.00; I, 36.75; N, 4.06. Found: C, 51.96; H, 6.81; I, 36.6; N, 4.42.

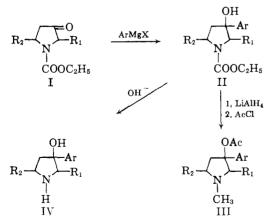
The lower melting methiodide, m.p. 171–173°, was obtained by fractional concentration of the mother liquor from the higher melting methiodide.

Anal. Caled. for $C_{6}H_{24}IN$; C, 52.20; H, 7.00; I, 36.75; N, 4.06. Found: C, 52.17; H, 7.14 I, 36.45; N, 4.38.

Acknowledgment.—We are indebted to Mr. Carl Gochman for excellent technical assistance and to Dr. Gordon Ellis and associates for the microanalyses.

Pyrrolidines. IX. 3-Aryl-3-pyrrolidinols

WILLIAM A. GOULD, PAUL M. LISH, YAO-HUA WU, HERBERT R. ROTH, WALTER G. LOBECK, JR., JAMES M. BERDAHL, AND ROLLAND F. FELDKAMP


Mead Johnson Research Center, Evansville, Indiana

Received July 20, 1963

3-Aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters were hydrolyzed and decarboxylated in the presence of a strong base to produce 3-aryl-3-pyrrolidinols. These substances exhibited central nervous system stimulant activity and smooth muscle depressant action variously selective for smooth muscle of the bronchioles, uterus, gut, and the coronary and peripheral vascular system.

In general, useful autonomic drugs of the phenylalkanolamine type meet three criteria: (1) the aromatic nucleus and the nitrogen atom are separated by two carbon atoms; (2) the hydroxyl group is substituted on the carbon atom of the benzyl position; (3) the nitrogen atom is substituted by at least one hydrogen atom.^{1,2} During the investigation of the

syntheses of 3-aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters $(II)^3$ and 3-acyloxy-3-aryl-1-methyl pyrrolidines (III),⁴ we found that 3-aryl-3-pyrrolidinols (IV) that feature these three structural requirements could be produced.

This report is primarily concerned with the syntheses and pharmacological properties of these 3-aryl-3pyrrolidinols.⁵

Chemistry.—The preparation of 3-aryl-3-pyrrolidinols (IV) was effected by an alkaline hydrolysis and decarboxylation of 3-aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters (II). Hydrolysis under both acidic⁶ and basic⁷ conditions for the removal of the protective N-alkoxycarbonyl group are known in the literature. In the present work, acid hydrolysis was not attempted because of the unstable nature of these tertiary alcohols under acidic conditions.⁸ Kuhn and Osswald⁹ prepared D,L-allo-hydroxyproline by refluxing diethyl 4-hydroxy-1.2-pyrrolidinedicarboxylate with 10% aqueous barium hydroxide for 3 hr. This procedure was used successfully for the preparation of 3phenyl-3-pyrrolidinol, 3-(2-thienyl)-3-pyrrolidinol, and 2-methyl-3-phenyl-2-pyrrolidinol. However, for the last compound, a 30-hr. reflux time was required for a satisfactory yield. Evidently substituents in the 2and 5-positions of the pyrrolidine ring sterically hinder the hydrolysis of the ethoxycarbonyl group. This became more apparent in the hydrolysis of ethyl 2,5dimethyl-3-phenyl-3-hydroxy-1-pyrrolidinecarboxylate. Using equal volumes of ethanol and 56% aqueous potassium hydroxide and a 6-hr. reflux time, 2,5-di-

(7) W. R. Biggerstaff and A. L. Wihls, J. Am. Chem. Soc., 71, 2132 (1949).

(8) Acid dehydration of 3-aryl-3-hydroxy-1-pyrrolidinecarboxylic acid esters was found to occur without significant hydrolysis and decarboxylation of the alkoxycarbonyl group.

(9) R. Kulin and G. Osswahl, Chem. Bor., 89, 1423 (1956).

⁽¹⁾ R. A. McLean, in "Medicinal Chemistry," A. Burger, Ed., Interscience Publishers, Inc., New York, N. Y., 1960, p. 592.

⁽²⁾ R. B. Barlow, "Introduction to Chemical Pharmacology," John Wiley & Sons, Inc., New York, N. Y., 1955, p. 231.

⁽³⁾ Y. H. Wu, W. A. Gould, W. G. Lobeek, Jr., H. R. Roth, and R. F. Feldkamp, J. Med. Pharm. Chem., 5, 752 (1962).

⁽⁴⁾ Y. H. Wu, W. G. Lobeck, Jr., and R. F. Feblkamp, ibid., 5, 752 (1062).

⁽⁵⁾ Two reports on synthesis of N-substituted 3-aryl-3-pyrrolidinols have been published. Reference to two N-unsubstituted compounds were made in these publications. These pyrrolidinols were prepared by the hydrogenolysis of the corresponding N-benzyl compounds. (a) C. D. Lonsford, U. S. Patent 2,878,264 (March 17, 1059) (3-phenyl-3-pyrrolidinol); (b) J. F. Cavalla, R. A. Sclway, J. Wax, I. Scotti, and C. V. Winder, J. Mcd. Pharm. Chem., 5, 441 (1962) (2-methyl-3-phenyl-3-pyrrolidinol).

⁽⁶⁾ P. Ruggli, H. Steiger, and P. Schobel, Helr. Chim. Acta, 28, 333 (1945).

TABLE I

SUBSTITUTED ACRYLIC ACIDS AND ESTERS, R2CH=CHCOOR

No.	R	R2	M.p. or b.p., °C. (mm.)	Yield, %	Ref.
1	н	(CH ₃) ₂ CH	103-113 (6)	67	a
2	C_2H_{δ}	(CH ₃) ₂ CH	61-64 (6)	68	ь
3	н	3-Cyclohexenyl	50-52	50	c
4	C_2H_5	3-Cyclohexenyl	130-135 (15)	84	d
5	н	3.4-Methylenedioxyphenyl	225-230	71	e
6	C_2H_5	3.4-Methylenedioxyphenyl	63,5~66,5	94	ſ

^a A. A. Goldberg and R. P. Linstead, J. Chem. Soc., 2343 (1928). ^b R. P. Linstead, *ibid.*, 2498 (1929). ^c Anal. Calcd. for C₉H₁₂O₂: C, 71.02; H, 7.95. Found: C, 71.13; H, 8.07. Recrystallized from aqueous ethanol. ^dAnal. Calcd. for C₁₁H₁₆O₂: C, 73.30; H, 8.95. Found: C, 73.11; H, 8.88. ^e R. D. Hayworth, W. H. Perkin, Jr., and J. Rankin, J. Chem. Soc., 125, 1686 (1924). ^f W. Feuerstein and M. Heimann, Ber., 34, 1468 (1901).

methyl-3-phenyl-3-pyrrolidinol was obtained in 2% yield; a longer reflux time (24 hr.) resulted in a 10% yield. Using equal volumes of 1-propanol and 56% aqueous potassium hydroxide to which additional potassium hydroxide was added (50 g. per 100 ml. of 1-propanol) and a 20 hr. reflux time, a yield of 68% was obtained. These conditions were used as the general procedure for the hydrolysis and decarboxylation of ethyl 3-aryl-3-hydroxy-1-pyrrolidinecarboxylates to give 3-aryl-3-pyrrolidinols in good to excellent yields.

ladium-on-carbon produced ethyl 3-(4-hydroxyphenyl)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate (Table III, 4). Alkylation of this material with 4-chlorobenzyl chloride yielded ethyl 3-[4-(4-chlorobenzyloxy)phenyl]-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate (Table III, 5).

Experimental¹⁰

Substituted Acrylic Acids and Their Ethyl Esters (Table I).— These substances were prepared in a manner analogous to that previously reported.³

Ethyl 3-Oxo-1-pyrrolidinecarboxylates (I) (Table II).—The general procedures of our earlier work³ were used.

Ethyl 3-Aryl-3-hydroxy-1-pyrrolidinecarboxylates (II) (Table III). **A and B.**—Arylmagnesium halides were reacted with ethyl 3-oxo-1-pyrrolidinecarboxylates in ether (procedure A) or tetra-hydrofuran (procedure B) as previously described.³

Grignard Reagents.—The Grignard reagents were prepared from the appropriate halides in the conventional manner. Most of the halides are commercially available; 4-benzyloxybromobenzene,¹¹ 3-benzyloxybromobenzene,³ 3,4-isopropylidenedioxybromobenzene,¹² and 4-methylthiochlorobenzene¹³ were prepared according to reported procedures.

C. Ethyl 3-(4-Hydroxyphenyl)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate.—A mixture of 9.0 g. (0.025 mole) of ethyl 3-(4-benzyloxy)-3-hydroxy-2-methyl-1-pyrrolidinecarboxylate,³ 0.5 g. of 10% palladium-on-carbon, 5 ml. of glacial acetic acid, and 250 ml. of ethanol was hydrogenated¹⁴ at 3.5 kg./cm.² pressure and at room temperature until 0.025 mole of hydrogen was absorbed. The mixture was filtered and the filtrate concentrated at reduced pressure. The residue was dissolved in 200 ml. of

	TABLE II
ETHYL	3-Oxo-1-PYRROLIDINECARBOXYLATES

				Yield,	Molecular		N
No.	\mathbf{R}_1	\mathbf{R}_2	B.p., °C. (mm.)	%	Formula	Calcd.	Found
1	H	$(CH_3)_2CH$	85-86 (10)	14	$C_{10}H_{17}NO_3$	7.03	6.99
2	H	3-Cyclohexenyl	132 - 142(0.2)	33	$C_{13}H_{19}NO_3$	5.90	6.06
3	н	3,4-Methylenedioxyphenyl	145 - 150(0.1)	10	$C_{14}H_{15}NO_5$	5.06	4.96
4	CH₃	C_6H_5	114-116(0.1)	16	$\mathrm{C}_{14}\mathrm{H}_{17}\mathrm{NO}_3$	5.67	5.49

The preparation of a number of 3-aryl-3-hydroxy-1pyrrolidinecarboxylic acid esters has been reported earlier.³ Additional intermediates were prepared similarly. Four additional 3-oxo-1-pyrrolidinecarboxylic acid esters (I) were prepared by the modification³ of the method of Kuhn and Osswald.⁹ N-Ethoxycarbonylamino acid esters and substituted acrylic acid esters were allowed to react in the presence of sodium hydride to yield diethyl 4-oxo-1,3-pyrrolidinedicarboxylic acid esters. After partial hydrolysis and decarboxylation of these substances, 3-oxo-1-pyrrolidinecarboxylic acid esters were formed. Their physical properties and chemical analyses are recorded in Table II. The 3-aryl-3hydroxy-1-pyrrolidinecarboxylic acid esters (II) not recorded in our previous publication³ were synthesized by reaction of arylmagnesium halides with 3-oxo-1pyrrolidinecarboxylic acid esters (I). These aryl compounds are listed in Table III. In a number of instances, the isolated materials were very viscous oils and no analytical data were obtained. These substances, not included in Table III, were also converted to 3-aryl-3-pyrrolidinols.

Hydrogenolysis of ethyl 3-(4-benzyloxyphenyl)-3hydroxy-2-methyl-1-pyrrolidinecarboxylate³ with palether and washed with a saturated sodium bicarbonate solution. The ethereal solution was then extracted with a 10% aqueous sodium hydroxide solution. The alkaline extract was washed with ether, cooled, and acidified with 10% hydrochloric acid. The precipitated oily solid was extracted into ether and the ethereal solution dried over anhydrous magnesium sulfate. The ethereal solution was filtered and the filtrate evaporated at reduced pressure. The residue was mixed with 35 ml. of cold isopropyl ether and filtered; yield, 5.0 g. (75\%); m.p. 127–132°. D. Ethyl 3-[4-(4-Chlorobenzyloxy)phenyl]-3-hydroxy-2-

D. Ethyl 3-[4-(4-Chlorobenzyloxy)phenyl]-3-hydroxy-2methyl-1-pyrrolidinecarboxylate.—A mixture of 7.3 g. (0.027 mole) of the preceding compound, 4.4 g. (0.027 mole) of 4-chlorobenzyl chloride, 3.75 g. (0.027 mole) of anhydrous potassium carbonate, and 10 ml. of acetone was stirred and refluxed for 5 hr. The mixture was cooled and transferred to a separatory funnel containing 200 ml. of water and 200 ml. of ether. The ethereal layer was separated and washed with 10% aqueous sodium hydroxide solution and then with water. The ethereal solution was dried over anhydrous magnesium sulfate, filtered,

⁽¹⁰⁾ Melting points are corrected and were obtained by Mrs. M. E. Coates using a Thomas-Hoover Unimelt capillary melting point apparatus. Microanalytical data were provided by Spang Microanalytical Laboratory, Ann Arbor, Michigan, and Mr. C. I. Kennedy of the Control Laboratory, Mead Johnson Research Center.

⁽¹¹⁾ S. G. Powell and R. Adams, J. Am. Chem. Soc., 42, 657 (1926.

⁽¹²⁾ G. Sloof, Rec. Trav. Chim., 54, 995 (1935).

⁽¹³⁾ K. Brand and W. Groebe, J. Prakt. Chem., 108, 1 (1924).

⁽¹⁴⁾ The authors are indebted to Mr. R. R. Covington for his assistance in performing the hydrogenation experiments.

				-00 -00	$0C_2H_5$							
\mathbf{R}_2	Γ_3	Yield, S	Proc.	, °C.	Reerysta. solveat	Molecular formula		Found		Fogen> Found	~- % Nitrogen- Caled Eam	годен Раниса
	2-F _a CC _a H ₄	52	Y	81.5-83	"Origon	C, H, F, NO,	55.44	55 5S	5 32	16 15	69 T	91 AG
	3,4-CJ ₂ C ₆ H,	57	A	50100°.5	$i - \Pr_{\mathbf{r}}$	ClaHisCloNO3	51.33	51.20	10.0	20.2	191	05.1
	$3-F_sCC_sH_4$	99	Υ	125-126	i.Pr.()	CteHtsFaNO,	36.78 36.78	92 92	1 1	N N N	 	
	4-HCC ₆ II ₄	e	U	124-127.5	Et ₂ O-Skelly B	C JII NO.	(3 3S	F7 E9	(1	1 2 - 2	
	$4-(4-ClC_6H_4CH_4O)C_6H_4$	26 76	=	144-146	HOID .	C.,H.,CINO,	61 69	64 66	900	6.95	01.0 02.0	
	$4-CH_{3}SC_{6}H_{4}$	45	£	<i>h</i>		CaH.NO.S	e e			Î		
	4 - $C_6H_sC_6H_4$	8	В	114-116	EXCH-H ₃ O	C.H.NO.	73 82	73 08	2 1-	7 16	1.81	1.21
	3_{14} -Cl ₂ C ₆ H ₃	SN 0	¥,	101.5-103.5	$i - Pr_{s}()$	C.H. CLNO.	52 84	53 00	2 30	2 S.	UF F	
	4-C ₆ II ₅ CH ₂ OC ₆ H,	33	В	140-142	<i>i</i> -Pr()I[- <i>i</i> -Pr()	C.,H.,NO.	70.96	70 X3	80.1	6 - E	10.8	167 F
C ₄ H ₅	$C_{6}H_{3}$	56	V	113.5-115.5	i-Pr.()	Ct ₆ H ₂ NO ₃	68.41	68 43	e se s	16 2	5 10 30	9 - 6 - 6 - 10
	8,4-Cl ₂ C ₆ II,	53	¥	6.10-0.68	() ⁱ ·l _c [- <i>i</i>	C.,H.,CJ.NO,	60 01	60.02	10.12	2.01	10'0 89'0	10. 0 11. 0
C ₆ H ₅	C_6H_5	10	В	163-164.5	EtOH-H.0	C.H.NO.	73 89	73 74		12	1 21	1919
LCICaH	4-CIC ₆ H ₄	10	V	132-133.5	$i \sim P_{r_2O}$	C.,H.,CJ.NO.	10,09	60 10	N N	50 X	10-1 10-1	5 X
3,4-(CH ₂ C) ₄ H ₃	$C_{a}H_{a}$	NC NC	¥	120.5-133.5	() ^{*,1} {[- <i>i</i>]][()] _L {[- <i>i</i>	C.,.H.,NO.	67 60	67 63	5 08 80 5	6 13	. 6. 6 2 0 2	i di

and evaporated at reduced pressure. The residue was triturated with 25 ml, of isopropyl ether and filtered; yield 7.5 g, (92%); m.p. $142-144^{\circ}$.

3-Aryl-3-pyrrolidinols. A.---A mixture of 0.1 node of a 3-aryl-3hydroxy-1-pyrrolidinecarboxylic acid ester, 50 ml. of *n*-propyl alcohol, and *n*-solution of 25 g, of potassium hydroxide in 50 nol. of 10 N aqueous potassium hydroxide solution was stirred and refluxed for 20 br. After cooling the mixture, the alcoholic layer was separated and diluted to 400 nd, with isopropyl ether. After washing the solution with water and drying over anhydrones magnesime sulfate, the solution was filtered and neutralized with ethanolic hydrogen obloride. The precipitate was collected on *n*filter and reczystallized from the appropriate solvent(s). If a precipitate was formed upon cooling, the reaction mixture was diluted to 500 nd, with water and filtered. The solid was washed with water and dried. After cocrystallization from a suitable solvent, the hydroxhloride or benzoate salt was prepared in an alcoholic solution.

B. 3-Hydroxyphenyl-3-pyrrolidinols. —A mixture of 0.025 unde of a 3-benzybxyphenyl-3-pyrrolidinol (as the hydrochloride or benziate salt), 0.5 g, of 10^{4} , palladiom-no-carbob, and 200 ml, of 75^{4} , aqueous ethanol w.s. hydrogenated at 3.5 kg./cm.² pressure and at room temperature until 0.025 mole of hydrogen was absorbed. The mixture was filtered and the filtrate evaporated at reduced pressure. The residue was recrystallized from a snitable solvent.

C. 3-(4-Chlorophenyl)-5-cyclohexyl-3-pyrrolidinol Hydrochloride.---A mixture of 7.3 g. (0.023 mole) of 3-(4-chlorophenyl)-5-(3-cyclohexenyl)-3-pyrrolidinol hydrochloride, 0.2 g. of platimm oxide and 150 ml, of methanol was hydrogenated at 3.5 kg./ co.² pressure and at room temperature until the calculated amount of hydrogen was adsorbed. The mixture was filtered and the filtrate evaporated at reduced pressure. The residue $(7.0 \text{ g.; n.p. } 234-227^{\circ})$ was recrystallized from an ethanol-isopropyl ether mixtore, n.p. $252.5^{\circ} 253^{\circ}$.

Pharmacology

Methods. Effects on Smooth Muscle Studies in Vitro.— Certain tissues were removed from the guinea pig, rat, and rabbit and suspended in oxygenated physiological solutions maintained at controlled constant temperature. Movements of the smooth nuscle of the isolated tissues were recorded kymographically by way of attachment of the tissue to isotonic gravity writing levers. Test procedures employing these isolated tissues were for the most part conventional and have been described in previous reports from this laboratory.^{45, 18}

Effects on Mean Blood Pressure of Anesthetized Dogs.—Dogs were anesthetized with barbital (275 mg./kg. I.V.) and arranged for kymographic recording of intracarotid blood pressure. The compounds were administered intravenously in isotonic saline solution through an indwelling polyethylene catheter in the fermoral vein at a constant rate of 2.0 mg./kg./min.

Vascular Effects.—Femoral and coronary blood flow were recorded from anesthetized (barbital 275 mg./kg. I.V.) dogs by means of a Shipley-Wilson rotameter. Perfusion of the left descending ramus of the left coronary artery was carried out using blood from the carotid artery. In both the femoral and the coronary blood flow preparations, drug injections were build intraarterially through the output arm of the flowmeter.

The perfused isolated rabbit heart preparation was conducted using the classical Langendorf procedure as modified by Amlerson and Craver.¹⁷ In some of the isolated rabbit heart preparations, the coronary arteries were artificially constricted by adding 5 units of vasopressin to 1.5 l. of the perfusion fluid.

Bronchodilator Activity in Vivo.—Asthma-like attacks were induced in guinea pigs by subjecting the animals, in a closed spray chamber, to an aerosol of 1.0% histamine diphosphate.¹⁶ The guinea pigs were removed from the chamber immediately following signs of dyspnea or congluing, and re-exposed 2-4 hr. later, after treatment with a test agent. Thus, each animal served as its own control. Seven to twelve animals were used for each dosage level of a test agent. The time from the beginning of exposure to the onset of symptons was termed the "pre-dyspneic interval."

(15) P. M. Lish, K. W. Dungan, and E. L. Peters, J. Phaemacol. Expl. Therap., 129, 191 (1960).

(16) K. W. Dungan and P. M. Lish, J. Allergy, 32, 139 (1961).

(17) F. F. Anderson and B. N. Craver, J. Pharmacol. Exptl. Therap., 93, 135 (1948).

Table III: Furt. 3-Artl-3-hydrony-1-pyrrolidinecarboxylates

Standard deviation for mean pre-dyspneic intervals by these criteria is usually no greater than 10-15% of the mean. The effectiveness of a test agent in extending the pre-dyspneic interval was determined at its time of peak effect after subcutaneous administration.

Acute Lethal Effect in Mice.—Graded doses of the test compounds were administered by the specified route (oral or subcutaneous) in at least 3 groups of at least 5 mice per dose. The mice were observed over the 24 hr. interval following drug administration. Approximate lethal dosage for half the animals (ALD_{50}) was estimated graphically from the log dose-percentage death relationships.

Results

Initial survey of $_{\mathrm{the}}$ activities of 3-aryl-3pyrrolidinols revealed that many of them possessed general smooth muscle inhibitory activities apparently not dependent on blockade of the neurohumor normally responsible for a tropic influence on the tissue tested. For example, the compounds possessed no particular blocking selectivity against histamine, acetylcholine, or l-norepinephrine, yet spasms induced by these physiologic agents, as well as spasms induced by nonphysiologic substances, such as barium chloride were similarly inhibited. Sympathomimetic action, if involved at all, was not primarily responsible for the smooth muscle actions. The activity of the pyrrolidinols on intestinal smooth muscle, tracheal smooth muscle, and the smooth muscle of the accessory sex organs of the male and female rat are shown in Table V. It is necessary to keep in mind that sympathomimetics such as epinephrine, norepinephrine, and phenylephrine cause contraction of the seminal vessel but are potent inhibitors of the rat uterus.

Some of the compounds (e.g., 2, 8, 10, 13) had pressor effects on the mean blood pressure of the anesthetized dog; some of them (e.g., 32, 44, 46) were depressors. Some increased and some decreased the activity of exogenous *l*-epinephrine. Similarly, some slightly increased and some slightly decreased the heart rate. The effects of the pyrrolidinols on the mean blood pressure of the anesthetized dog, and the acute toxicity in mice are summarized in Table V.

Most of the pyrrolidinols produced weak stimulant effects in mice such as that seen following administration of ephedrine. Signs of a sympathomimetic nature such as exophthalmus, piloerection, and partial mydriasis were sometimes observed. Hypnotic effects, reflex blocking effects, or signs of neuromuscular impairment were seen only at near lethal dosage.

Secondary Evaluations.—Selected compounds were tested for smooth muscle inhibitory action or vasodilator action *in vivo*. Compounds having dominant central nervous system (CNS) stimulant effects were characterized by studying their ability to antagonize hypnosis induced by chloral hydrate or pentobarbital in mice.

Bronchiolar Smooth Muscle.—Several compounds displayed important bronchodilator action *in vivo*. In this test compounds 4, 10, 44 and 47b *in vivo* were similar in potency to aminophylline and ephedrine, and possessed greater margin between effective dosage and dosage causing CNS effects than ephedrine or aminophylline (see Table VI).

Vascular Smooth Muscle.—A number of 3-aryl-3pyrrolidinols were studied for their activity on the vascular bed supplied by the femoral artery in the dog, the isolated rabbit heart, and the dog coronary arterial bed. Several compounds induced significant coronary vasodilation in both the dog heart preparation *in vivo* and in the isolated rabbit heart preparation. Certain pyrrolidinols, compounds 10, 23, and 35a showed selectivity for dilation of the coronary arteries of the dog in that they constricted the vessels of the femoral bed. Compound 50c had no effect on the femoral bed but dilated the coronary bed of the dog (see Table VII).

In the isolated rabbit heart preparation the pyrrolidinols depressed cardiac contractile force. However, there was no correlation between the degree of cardiac depression and the magnitude of the coronary flow increase. Furthermore, the compounds caused little, if any, depression of the dog heart *in vivo*.

Central Nervous System (CNS) Effects.—Six pyrrolidinols were tested for ability to antagonize chloral hvdrate-induced hypnosis in mice. Compounds 23, 44, 69, and 72 administered in subcutaneous dosage at approximately one-fourth the LD_{50} failed to decrease chloral hydrate-induced sleeping time. Compounds 57 and 66 at subcutaneous dosage of 50 mg./kg. and 8 mg./kg., respectively, significantly reduced sleeping time. These compounds could not, however, reduce the hypnosis caused by pentobarbital in mice. These and similar tests indicated that the central nervous system actions of the 3-aryl-3-pyrrolidinols tested resembled the action of ephedrine rather than that of the more specific CNS stimulants such as amphetamine.

Discussion

A number of generalizations regarding the structure-activity relationships of 3-aryl-3-pyrrolidinols can be discerned from the pharmacological data.

Substitution of alkyl groups in the 2- and 5-positions of the pyrrolidine ring resulted in increased toxicity and CNS stimulation. Introduction of cycloalkyl and aryl groups into the 5-position likewise increased the toxicity, but was associated with increased smooth muscle depressant activity.

Generally, increased pharmacological activity was associated with substitution in the 3-phenyl ring. Most compounds containing a phenolic hydroxyl group showed an increased pressor response.

Introduction of a halogen atom into the 3-phenyl ring resulted in increased smooth muscle depressant activity and increased duration of action. This was especially true for 4-chloro and 4-bromo derivatives. Compounds 10, 44, and 47b showed increased bronchodilator activity, whereas compound 72 showed increased intestinal smooth muscle depressant activity. Significant coronary vasodilator activity was associated with 3,4-dichlorophenyl derivatives, especially when the pyrrolidine ring was substituted in the 5-position (73b).

Introduction of large groups, such as benzyloxy and phenoxy, into the 3-phenyl ring produced significant coronary vasodilator activity (50c) and intestinal smooth muscle depressant activity (35a).

Other substituents in the 3-phenyl ring, such as alkyl, alkoxy, and alkylthio, had no significant effect on the pharmacological activity of the 3-aryl-3-pyrrolidinols.

Apparently the incorporation of the phenylalkanolamine structure into the pyrrclidine ring produced

						Re- crystp.	Yield.	Pro-	Molecular	tor c	5	c/ 17					
N7.5	R	т	R ₂ R ₃	Salt	M.p., °C.	solv.	т тена, — %	eedure	Formula	- ~-'% C Caled.	arbon— Found	· ≁% Hy Culwl	drogen— Econol	$- \frac{1}{2} $	trogen Found	% Ch Caled.	dorine – Found
No,	10	1	19 ECO					(cum)				Carca.	roma	Carea.	roma	Calca.	round
1	11	11	C ₆ H ₅	HC1	147148	e	46	А	$C_{10}H_{2}NO \cdot HC1$	60.14	60.24	7.07	7.10			17.76	17.94
$\frac{2}{2}$	11	Н	$C_6 \Pi_{11}$	HCI	179-181	C	46	A	C10H:9NO · HCl	58.39	58.55	9.80	9.66	6.80	6.83	17.23	17.81
3	H	H	2-Thienyl	1IC1	163 - 165	a	37	А	C ₈ HnNOS·HC1	46.71	47.12	5.88	Б.19			17.24	17.30
4	п	11	$4-ClC_6H_4$	14Cl	170.5-172	d	89	Α	C10H12CINO · HC1	51.30	51.42	5.60	5.24			15.14	15.12
5	П	11	$3-C1C_6H_4$	HC1	173-175	e	86	А	C191I12CINO · HC1	51.30	51.03	5.60	5.50			15.14	15.48
6	н	Н	2-C1C6H4	HC1	238.5-239 dec.	d	82	Α	$C_{10}H_{12}CINO \cdot HCI$	51.30	51.14	5.60	5.49			15.14	15.49
7	11	11	4-BrC6H4	HCI	187.5 - 188.5	5	90	Α	C ₁₀ H ₁₂ BrNO · HCl	43.11	43.41	4.70	4.81	5.03	5.04	12.73	12.92
8	11	н	4-FC6114	HC1	182–183 dec.).	80	Λ	C10H12FNO · 11Cl	55.18	55.45	6.02	6.03			16.29	16.37
0	н	11	3-F3CC61f4	HC1	162.5 - 164	e	88	Α	C1,H12F3NO·HCl	49.35	49.39	4.89	4.84			13.25	13.46
10	11	н	3.4-Cl2C6113	1IC1	188 - 189.5	e	95	۸	C ₁₀ H ₁₁ Cl ₂ NO · HCl	44.72	45.04	4.51	4.78			13.20	13.26
11	11	н	4-CH3C6114	HCI	153 - 154	đ	90	А	C11H16NO · HCl	61.82	62.08	7.55	7.78			16.59	15.92
12	11	Н	2-CH3C6H4	lICl	199–199.5 dec.	ь	82	А	CnH ₁₆ NO · HCl	61.82	61.21	7.55	7.44			16.59	16.82
13	ir	п	2,5-(CH3)2C6H3	HCl	218-219 dec.	Ĵ	83	Α	C12H17NO · HCl	63.30	63.74	7.97	7.93	6.13	15.10	15.57	15.72
14	п	11	2-CH3OC6114	HCI	138.5-139.5 dec.	ſ	49	А	C51H15NO2 HCI	57.51	57.65	7.02	7.32	6.10	Б.10	15.44	45.53
15	1I	й	4-C2H5OC6114	HCI	125.5-426.5 dec.	ſ	74	А	C12H17NO2 HC1	59.14	59.27	7.45	7.40	5.75	5.86	14.55	11.28
16	11	н	4-C6H6C112OC6H4	Benzuate	187-189	Ŀ	83	А	C171119NO2 · C7116O2	73.63	73.37	6.44	6.36	3.58	3.55	• • • • • •	
17	11	н	3-C6lI6CH2OC6H4	Benzoate	133-135	с	76	Α	C17H19NO2 C7H6O2	73.63	73.57	6.44	6.40	3.58	3.50		
18	н	н	4-11OC6114	Benzoate	164–165 dec.	a	60	В	C10H)3NO2 · C7H6O2	67.76	67.78	6.36	6.20	-1.65	4.79		
19	n	й	3-HOC6H4	Benzoate	209.5-211.5 der.	g	89	в	$C_{10}H_{13}NO_2 \cdot C_7H_6O_2$	67.76	67.68	6.36	6.39	4.65	4.63		
20	н	n	4-ClC6H4Cll2	нсі	187-188	d	74	Ā	C ₁₁ H ₁₄ ClNO · HCl	53.24	53.04	6.09	6.18	5.64	5.63		
20	CH ₃	11	Cells	HCl	196-198	a	52	Δ	CnH16NO · HCl	61.82	61.75	7.55	7.59	10.101		16.59	16,50
21	CH ₃	11	C6H6CH2	HCI	188-190.5	с	62	А	C ₁₂ H ₁₇ NO · HCl	63.28	63.20	7.97	7.90			15.57	15,39
22	CH3 CH3	H	4-ClC6II4	HCI	205-207	e	82	$\overline{\Lambda}$	CnH ₁₄ ClNO · HCl	53.24	52.98	6.09	6.14	5.64	5.50	14.20	14.33
23 24		Н	3-ClC6H4	псі	180-182	c	89	A	CnH ₁₄ ClNO · HCl	53.24	53.27	6.09	5.65	0.01	0.00	14.20	14.48
24 25	CH ₃	H	2-CIC6H4	нсі	251.5-253.5 dec.	1	87	A	C11H14CINO · HCl	53.24	53.21	6.09	5.98			14.29	14.48
23 26	CH ₃	п	3-F3CC6H4	HCI	199.5-201.5	d	87	A	C12H14F3NO · HCl	51.16	51.29	5.37	5.64				
	CHa	п	3.4-Cl2C6Hx	HCI	268-269 dec.	e	91	A	C ₁₁ H ₁₃ Cl ₂ NO · HCl	46.75	46.79	4.99	$5.04 \\ 5.16$	4.95	4.93	12.59	12.67
27			4-CH3C6H4	HCI	205.5-207	e	66	A	C12H17NO · HCl	63.28	63.46	4.99 7.97	8.13	4.90	4.09	1.5 5.7	15 01
28	CH3	11	2-CH3C6H4	HC1+0.5H+0	218-219.5 dec.	¢	70	A	C12H17NO·HC1·0.5H2O		03.40 00.08	8.09		Ja		15.57	15.61
29	CH_3	Н		IICI U.SH2O	190.5-192	c	39	A	C12H19NO·HC1	64.57	64.47		8.36		- 00	14.98	14.78
30	Cll3	и	2,5-(CH3) ₂ C ₆ 11 ₃	HCI	190-190, 5 dec.	с	39 82	A	C13H16NO HCI C12H17NO2 HCI	59.13		8.38	8.34	5.79	5.89	14.66	14.67
31	CH3	н	4-CH3OC6H4	HCI	221-223 dec.	i	82 43		$C_{12}H_{17}NO_2 \cdot HCl$		59.25	7.44	7.48		-	14.55	14.68
32	CH3	Ħ	2-CH3OC6114		221-223 dec. 176.5-178.5 dec.	c		A		59.13	59.14	7.44	7.54	5.75	5.72	14.55	14.67
33	CH3	11	4-C2H6OC6II4	11C1		g	61	A	C18H19NO2 · HCl	6 0.57	60.42	7.82	7.80			13.75	13.82
34	CH_3	н	4-C6II5OC6II4	HCl	239-230.5 dec.	e e	40	Λ	C ₁₇ H ₁₉ NO ₂ ·HCl	66.76	66.54	6.59	6.48	4.58	4.65	11.150	11.56
35a	CH_3	Н	4-C6H6CH±OC6lI4	HCl	214-215 dec.	c	90	А	$C_{18}H_{21}NO_2 \cdot 1ICl$	67.59	67.39	6.93	7.00	4.38	4.40		
35b	$C1I_3$	н	$4-C_6H_bCH_2OC_6H_4$	Benzoate	164-166	e	79		$C_{15}H_{21}NO_2 \cdot C_7H_6O_2$	74.05	73.76	6.71	6.29	3.45	3.50		
36	CII_3	П	3-C6H5CH2OC6H4	HC1	138.5-140	12	94	A	$C_{18}H_{21}NO_2 \cdot HCl$	67.59	67.30	6.93	6.87			11.09	11.27
37	CH3	11	4-110C6H4	Benzoate	202.5-204.5 dec.	í Í	62	В	C ₁₁ H ₁₅ NO ₂ ·C ₇ H ₅ O ₂	68.55	68.23	6.71	6.42	-1 -1-1	4.39		
38	CH_3	п	3-HOC6H4	HCI	232-233 dec.	-	93	в	C ₁₁ H ₁₆ NO ₂ ·HCl	5 7 .50	57.18	7.02	6.59			15.44	15.63
39	CH_3	н	4-(4-ClC6lf4Clf2O)C6lf4	HC1	211212 dec.	e v	72	A	C18H20CINO2 IIC1	61.02	61.00	5.98	6.07			10.01	14.12
40a	CH₃	Ħ	3,4-lsopropylidenedioxy- phenyl		126.5-128.5	t.	37	Λ	C14H19NO3	67.45	67.55	7.68	7.82	5.62	5.72		
40b	CH3	11	3,4-Isopropylidenedioxy- phenyl	Benzoate	193-196 dec.		90		$C_{13}H_{19}NO_3 \cdot C_7H_6O_2$	67.(10	6 7.81	6.78	6.77	3.78	3.80		

Vol, 7

41	(111																	_
41a	CH3	н	4-CH ₃ SC ₆ H ₄		157-159	ſ	57	Λ	C12II17NOS					6.27	6.30	10 50	19.00	January,
41b	CH3	H	4-CH3SC6H4	HC1	204.5-206.5 dec.		7 5		C)2H17NOS·IICl	55.47	55.51	6.99	6.86	5.39	5.56	13.56	13.66	11
42	CH3	П	4-C6H6C6H4	HCI	250–251 dec.	g	55	Α	$C_{17}H_{19}NO \cdot HCl$	70.45	70.48	6.96	6.98	4.83	4.90	12.24	12.37	18.
43	н	CII3	C_6H_6	HCl	152.5 - 154	e	74	Λ	C11 H15 NO · HCl	61.81	62.30	7.55	7.79			16.59	17.04	ſŢ
44	Н	CH3	4-ClC6H4	11C1	179-181	e	59	Α	CnH ₁₄ ClNO · HCl	53.24	53.16	6.09	6.12			14.29	14.31	
45	н	CH3	3-ClC6H4	HCl	158-160	e	79	Α	CnH ₁₄ ClNO · HCl	53.24	53.35	6.09	6.06			14.29	14.32	1964
46	н	CII3	2-ClC ₆ H ₄	HC1	203–205 dec.	ſ	79	А	C11H14CINO · HCl	53.24	53.19	6.09	6.15			14.29	14.22	õ
47a	11	CH3	4-BrC6H4		141-143	e	73	Α	C ₁₁ H ₂₄ BrNO	51.55	51.75	5.51	5.56	5.49	5.50			-44
47b	н	CH_3	4-BrC ₆ H ₄	HC1	204.5-205.5 dec.	e	95		C11H14Br NO · HCl	45.15	45.20	5.16	5.29	4.78	4.90			
48	II	CH_3	4-FC6H4	HCl	145-147	e	60	Λ	CDH4FNO-HCl	57.02	56.93	6.52	6.61			15.30	15.15	
49	н	CH_3	3,4-Cl ₂ C ₆ H ₃	HCl	191-192	e	90	Α	$C_{11}H_{13}Cl_2NO \cdot HCl$	46.75	46.75	4.99	4.99			12.55	12.54	
50a	н	CH3	4-C6H6CH2OC6H4		160-162	ь	65	Α	$C_{18}H_{21}NO_2$	76.27	76.31	7.47	7.53	4.96	4.86			
50b	п	CH_3	4-C6H5C112OC6H4	Benzoate	167-169	с	93		$C_{18}H_{21}NO_2 \cdot C_7H_6O_2$	74.05	74.10	6.71	6.83	3.45	3.59			
50e	н	CH3	4-C6H6CH2OC6H4	HCl	182-182.5 dec.	e	71		C18H21NO2 · HCl	67.59	67.61	6.93	7.03	4.38	4.46	11.09	11.35	
51	н	CH3	4-110C6114	HC1	207-209 dec.	ſ	40	в	C11H16NO2 · HCl	57.50	57.76	7.02	7.27	6.10	6.09	15.44	15.46	
52	C_2H_5	11	C ₆ H ₆	HCl	248.5-249 dec.	с	60	Λ	C12H17NO·HCl	63.28	63.56	7.97	7.52			15.57	15.40	
53	C_2H_{δ}	Н	4-C1C6H4	HCI	235-236, 5 dec.	e	80	A	C12H)6ClNO · HCl	54.97	55.13	6.54	6.64			13.52	13.47	
54	C_2H_6	н	4-C6H6CH2OC6H4	Benzoate	163-165	c	73	Â	$C_{19}H_{23}NO_2 \cdot C_7 II_6O_2$	74.44	73.88	6.97	6.89	3.34	3.31			
55	C_2H_b	Н	4-HOC6H4	Benzoate	174.5-176.5 dec.	e	95	B	C12H17NO2 · C7H6O2	69.28	69.17	7.04	7.05	4.25	4.13			
56	н	C21I5	С6Н6	HCl	187-188	e	80	Ã	$C_{12}H_{17}NO \cdot HCl$	63.28	63.26	7.97	8.09	6.11	5.98			
57	н	C2H6	4-ClC6H4	HCI	173-175	e	86	Ā	C12H15CINO · IICI	54.96	55.06	6.54	6.55	5.34	5.31	13.53	13,73	
58	п	(CII ₃) ₂ CH	C6H6	HCI	226.5-227.5 dec.	g	48	A	C13H19NO HCl	64.57	64.67	8.34	8.30	5.79	5.81	14.66	14,90	
59	н	(CH ₃) ₂ CH	4-ClC6H4	HCI	206.5-207.5 dec.	g	35	Â	C ₃ H ₁₈ ClNO HCl	56.53	56.45	6.93	7.02	5.08	5.11	12.83	13.16	
60	CH3	CH ₃	СеНе	HCI	232.5-233.5 dec.	e	68	A	C12H17NO · HCl	63.28	63.22	7.97	7.54	0.00	5.11	15.57	15.10 15.44	
61	CH ₃	CH3	4-ClC6H4	HCI	251-252 dec.	e	84	A	C12H16CINO · HCl	54.97	55.32	6.54	6.62	5.34	5.31	10.01	19.44	
62	CH3	CH ₃	4-ClC6II4	IICI	222, 5-224, 5 dec.	1					55.52 54.91	6.54		5.34	5.46			
63	CH3	CH3	4-C6H5CH2OC6H4	HCl	248.5-249 dec.	a	46	A	C12H16ClNO · HCl C19H23NO2 · HCl	54.97			6.47		$\frac{5.40}{4.30}$	10.62	10.60	
64	CH ₃	CH ₃	4-HOC6H4	HCl		,	61	A		68.35	68.55	7.25	7.53	4.20		10.02	10.00	
65	C ₂ H ₅	CH ₃ CH ₃	4-1006H4 C6II6		221.5-223 dec.	a	69	в	C12H)7NO2·IICl	59.13	58.85	7.44	7.43	5.75	5.82	14 07	14 05	
66	C2116 C2H5	CH3	4-ClC6H4	HCl	269.5-270 dec.	j	65 49	A	C13H19NO · HCl	64.60	64.80	8.34	7.76	- 07	7 00	14.67	14.67	÷
67	H	-		HCI	276-276.5 dec.	, ,	42	A	C ₃ II ₁₈ CINO · HCl	56.53	56.65	6.93	7.07	5.07	5.02			Pyrrolidines
	л Н	3-Cycloliexenyl	C6H6	HCl	232.5-233.5 dec.	ŗ	26	Λ	C ₁₆ H ₂₁ NO · HCl	68.68	68.67	7.93	7.97	5.01	5.02			RI
68 60		3-Cycloliexenyl	4-ClC ₆ II ₄	HCl	252.5-253 dec.	d	37	A	$C_{16}H_{20}C1NO \cdot HC1$	61.15	61.12	6.74	6.82			11.28	11.42	õ
69 70	н П	C ₆ H ₁₁	C ₆ IIs	HC1	226.5-227 dec.	a f	47	A	C)6II23NO · IICl	68.18	68.00	8.58	8.46	4.97	4.79			E
70	-	C ₆ II ₁₁	4-ClC ₆ H ₄	HCl	252.5–253 dec.	,	95	С	$C_{16}II_{22}CINO \cdot HCl$	60.76	60.62	7.33	7.08	4.43	4.45	11.21	11.22	E
71	И	C6H5	C6H6	HCl	207-208 dec.	,	47	A	$C_{16}H_{17}NO \cdot HC1$	69.69	70.14	6.58	6.78			12.86	12.50	E
72	H	C6H5	4-CIC6II4	HCl	204-205 dec.	g	85	Α	$C_{16}H_{16}CINO \cdot HCI$	61.94	61.87	5.52	5.59			11.43	11.14	E
73a	н	C ₆ H ₆	3,4-Cl2C6Ha		157-159	e	74	Λ	C ₁₆ H ₁₆ Cl ₂ NO	62.35	62.37	4.91	4.99	4.55	4.60			<u>0</u>
736	н	C ₆ H ₆	3,4-Cl2C6H3	1ICl	201-203 dec.	,	95		$C_{16}H_{15}Cl_2NO \cdot HCl$	55.75	55.70	4.68	4.68	4.06	4.07	10.29	10.23	
74a	H	C ₆ II ₅	3-F'3CC6H4		147 - 149	e	78	Λ	$C_{17}H_{16}F_{3}NO$	66.45	66.47	5.25	5.09	4.56	4.52			XI
746	Ħ	C6H5	3-F3CC6H4	HCl	203-204.5 dec.	e	77		C17H16F3NO · HCl	59.39	59.43	4.98	5.12	4.07	3.98	10.32	10.45	\sim
75	CH_3	C6H5	С6Нь	HC1	275–276 dec.	e	62	A	C17H19NO · HCl	70.45	70.59	6.95	7.30	4.83	4.89	12.24	12.44	
76a	н	4-ClC6II4	C_6H_6		160-162	C	88	Λ	C ₁₆ H ₁₆ ClNO	70.20	70.22	5.89	5.99	5.11	5.21			
76b	н	$4-ClC_6H_4$	C_6H_6	HC1	207-207.5 dec.	e	90		$C_{16}H_{16}C1NO \cdot HC1$	61.94	61.88	5.52	5.49	4.52	4.51	11.43	11.47	
77	11	4-ClC ₆ H ₄	4-ClC6H4	HCl	204-204.5 dec.	ſ	67	Α	$C_{16}H_{15}Cl_2NO \cdot HCl$	55.75	55.84	4.68	4.67			10.29	10.06	
78	н	4-CH ₃ OC ₆ H ₄	C6H6	HCl	164-166 dec.	С	95	Α	$C_{17}H_{29}NO_2 \cdot HCl$	66.77	66.79	6.59	6.62			11.60	11.55	
79a	н	3_4 -CH ₂ O ₂ C ₆ H ₃	C_6H_5		150 - 152	e	95	Α	C17H17NO3	72.07	71.81	6.05	5.97	4.94	4.94			
79b	н	$3.4 - CH_2O_2C_6H_3$	C6II5	HCl	215-216 dec.	C	92		C17H17NO3 · HCl	63.84	63.64	5.67	5.97	4.38	4.04	11.09	11.20	
80a	н	3_4 -CH ₂ O ₂ C ₆ H ₃	4-ClC ₆ H ₄		161 - 162	e	75	Α	$C_{17}H_{16}ClNO_3$	64.25	64.40	5.07	5.04	4.41	4.47			
80Ъ	н	3_4 -CH ₂ O ₂ C ₆ H ₃	4-ClC6114	HCl	215-216.5 dec.	C	99		$C_{17}H_{16}ClNO_3 \cdot HCl$	57.63	57.65	4.84	5.16	3.96	3.95	10.01	10.06	

^a Ethanol. ^b Aqueous ethanol. ^c Isopropyl alcohol. ^d Ethanol-ethyl ether. ^e Isopropyl alcohol-isopropyl ether. ^f Ethanol-isopropyl ether. ^g Methanol-isopropyl ether. ^b Anal. Calcd.: H₂O, 3.80. Found: H₂O, 3.60. ⁱ Anal. Calcd.: S, 14.36. Found: S, 14.28.

Results of Pharmacological Screening of Some 3-Aryl-3-pyrrolidinols Acute Tunicity, Blood Pressure Effects, and Smooth Muscle Inhibitory Actions

	ACLTE IO	ACITY, BI		E LEFFECTS, A: of oman pressure	Adrenergie Adrenergie blocking action	Smootl	BIDRY ACOTO 5 muscle at activity	N8	
			of anestbe	tized logs	Rar sommal		normal tonus		iodie action
	115		Minimal		veside <i>es.</i>	,	is contractions	Rabbit	Coninea pig ileunt cs.
	← ALD‱ Dose,	mouse	effertive olose,	Predominant	1-norepin- epbrine,	Ubinea pig trachea.	Rat nterns.	ileum cs. BaCl2	histamine,
No.	tog./kg.	Route	nig./kg. I. V.	effert ^e	$1 \operatorname{Cset}(\mathrm{nl}^{h})$	1C to y, 'ml."	IC 50%/001.6	IC757/ml.h	IC 16 y/ml.
1	625	Oral	1.0	± 20		et i	c	- • •	- , -
2	375	S.e.	1.D	- 30	0.80	3050	(ditt	>40	
3	1625	Oral	5.0	± 19		ð			
4	520	S.c.	1,0	+20	100	290	360	>20	G. 5
5 6	675 1675	5.v. 5.v.	0.5 5.0)1 +)1	41 47	480))80	500 950	> 20 > 20	$17.0 \\ 18.0$
7	817	×.e.	1.0-5.0	+ (15 - 40)	190	9(11)	200	>40	18.0
8	1500	S.c.	5.0	+24		>1600	1000	>40	
9	855	$\sim .c$.	5.0	+10	(11	2130	300	>20	5.3
10	675	S.r.	1.0	+25	78	30 1.2 - 0	100	>20	1.4
11 13	1050 595	S.c. S.c.	1.0 1.0	$+ \frac{1}{40}$	$\frac{35}{28}$	$1250 \\ 1400$	$\frac{1280}{450}$	>20 158	91.0 43.0
14	1025	S.s.	5.0	± 10	40.5	e e	>1000	>40	4.0.0
15	475	S.e.	2.5	+15	730	1800	630	> 400	
18			0.1	± 20		đ	đ		
19	>2000	×.r.	0.4	+30	>80	>1600	430	>20	
20 21	750 1400	S.e. Oral	5.0	+12(-8)		>>600	390	>40	
21 22	1100	Orai	1.0 1.0	$^{+12}_{\pm 12}$		d	e:		
23	225	S.c.	1.0	+12 + 18	122	140	260	>20	6.6
24	77	S.e.	2.0	+25	105	190	360	>20	14.0
25			5.0	+4		660	750		
26	102	S.c.	1.0	± 25	140	315	340	>20	8.2
27 28	188 1590	8.c. 8.e.	$\frac{1.0}{1.0}$	+14	35	70	88	>20	3.2
28 29	1190	e.e.	1.0	+)8 +3	81	1460	640 v	>20	14.5
30	320	S.c.	5-40	(1048)	135	1600	710	>40	
31			5.0	+10		4	6		
32	325	S.r.	10.0	-10	9.5	>1600	>1000	>40	
33	1540	S.c.	5.0	- 2	300	>1600	>4000	>40	
34	8 50	S.e.	10.0	-5(+3)	33	300	37	5.4	3.4
35a 36	>1000 1330	S.e. Soci	$5.0 \\ 1.0$	+10 - 10	$\frac{41}{25.5}$	270 350	$\frac{8.5}{39}$	$\frac{5.8}{12.0}$	
37	1	1	0.5	+18	_ ,/,,/	2	170	1	
38			0.25	+30		<i></i>	e		
30			0, 5	- 20		50	11		
4 0 a			1.0	+5		-	125		
41b	>1000	S.c.	5.0 1.0	$-5(\div7)$	T .)	70	180	10.0	
42 43	>1000 875	Oral	1.0		25	35 d	⇒.9	12.0	
4.1	370	S.c.	5.0	- 20	115	175	490	>20	0.58
45	300	S.c.	5.0	-15	54	400	310	>20	a.98
46	20		10.0	- 25		100	d		
47l)	$\frac{260}{750}$	S.r. S.c.	$\frac{1-5}{5-10}$	± 10 ± 5	158 50	610 >1600	>1000 >1000	>40 >40	0.35
48 49	297	S.r.	1-20	$= -(5 \cdot 10)$	22.5	2600	90	40.0	
50e	620	S.e.	1,0		36.5	230	9.6	15.2)(1 5
51			1.0	+30		815	10		
52			5.0	+10		<i>d</i>	e		
53 55	$\frac{340}{1325}$	S.e. S.e.	5, 0 5, 0		$\frac{132}{80}$	390 >1500	150 > 3200	>40 >20	
50 519	330	S.c.	5.0	-20	<u>80</u>	>1:00	1220	>40	
57	203	S.e.	5.0	-10		1500	240	> 41)	
58	225	S.c.	.5) ()	-8	105	>2000	>1000	> 40	
59	225	S.e.	514	-12	22	840	210	22.0	11.11
60	1570	Oral	5.0	+8	1.0	200		N 16	
1)1 152	180 190	8.e. 8.e.	1.0 5.0	÷18 ~25	49	730 780	220 240	>40 >40	
163	1.000		0.0	+20		73)2	240	
164			1.0	+22		./	90		
165			10.0	-20			c		
(41)	130	S.e.)5	±7	35	71	59	>20	
67 68	244 265	S.e. Oral	$\frac{10.0}{1.0}$)i 15	$\frac{45}{5.7}$	370 80	11a1 20	$\frac{35.0}{5.0}$	
10	115	S.e.	5.0	7	97 5	490	50	33.0	5.1
70			1.0	5		914	28		••••
7)	0.1	Oral	5.0	···· .ī		7(11)	165		
72	71:	S.c.	1.0			122	-1D	6.5).3
5341)825	S.r.	5.0	- 16	7.1	250	7.2	2.7	2.7
7.4b 75	110	S_{ikl}).1) 27(1	-7(+20) -10	8.90	250 860	26) 15	07.0	2.7
7145	2810	S.c.	5.0	-10	6.0	200	39	12.8	
77			10.0	-22		820	15		
78	243	S.c.),0		125	350	80	> 20	4.5
795 901.	165	۷.,	$\frac{1}{5}$ 0	10 11	2.4	>15 138	164 304	10.0	
8015	[1).)	Sec.	., .,	- 111	2.00	100	,,,	111.17	

TABLE V (Continued)

					Adrenergic				
			Effect o	f mean	blocking	Smooth	muscle		
			blood p	ressure	action	depressan	t activity		
			of anesthe	tized dogs	Rat seminal	Inhibition of	normal tonus	-Antispasi	nodic action-
			Minimal		vesicle vs.	or spontaneou	s contractions	Rabbit	Guinea pig
	$-ALD_{50}$ n	nouse	effective		1-norepine-	Guinea pig	Rat	ileunı	ileum vs.
	Dose,		dose,	Predominant	plorine.	trachea.	uteros,	rs. BaCl2.	histan ine.
	mg./kg.	Route	mg./kg. I. V.	effect ^a	$\mathrm{IC}_{60}\gamma/\mathrm{inl.}^{b}$	ICπγ/ml. ^b	$\mathrm{IC}_{60}\gamma/\mathrm{inl}.^b$	$\mathrm{IC}_{76}\gamma/\mathrm{n}\mathrm{sl}.^{b}$	ICτεγ/nil. ^b
$\mathbf{E}_{\mathbf{p}}$ hedrine	200	Oral	0.2	+20	d	$1 \cdot 0^e$	0.26	> 40	30
Aminophylline	370	Oral	4.0	-15	>400	60			
Papaverine	615	S.c.	0.5	-20	9.8	1.0	6.9	3.5	2.5
Chlorpheniramine								> 20	0.0016

^a Maximal increase (+) or decrease (-) in mean blood pressure (mm.). ^b Concentration in bath fluid causing the stipulated per cent decrease in spasm or inherent activity; values interpolated from log concentration-response curves representing 2-5 trials each of 2-4 concentrations. c Stimulated the smooth muscle under test. d No effect. c Ephedrine is unable to produce 75% decrease in the tonus of the tracheal spiral; 1.0 γ /ml. causes maximal reduction (ca. 50%).

TABLE VI

BRONCHODILATOR ACTION OF SOME 3-ARYL-3-PYRROLIDINOLS

TABLE V	II
---------	----

VASCULAR ACTIONS OF SOME 3-ARYL-3-PYRROLIDINOLS

	IN THE HISTAMINE	Aerosol Test		
No.	Approximate subcutaneous dosage (mg./kg.) effecting 100 second increase in pre-dyspneic interval, (ED ₁₀₀ sec.)	Remarks	No.	Increased coronary flo in isolated rabbit hear % aminophyllin
4	(ED)@ \$20.)	No CNS effects below 120	10	100
4 10	40	mg./kg. No CNS effects below 80 mg./kg.	20 23 27	<20 80 200
34	>80	No CNS effects at 80 mg./kg.	31	100
39	>90	No CNS effects at 90 mg./kg.		
42	>80	No CNS effects at 80 mg./kg.	34	300
44	30	No CNS effects below 120 mg./kg.	35a 36	$\frac{200}{200}$
47b	30	No CNS effects below 100 mg./kg.	$\frac{44}{49}$	$\frac{80}{120}$
50c	>40	No CNS effects at 40 mg./kg.	50c	500
59	>80	Convulsions at 80 mg./kg.	53	100
68	>80	No CNS effects at 80 mg./kg.	55	No activit
$\overline{72}$	>20	Convulsions at 20 mg./kg.	56	No activit
73b	>40	No CNS effects at 40 mg./kg.	58	No activit
74b	20	Convulsions at 20 mg./kg.	67	120
Ephedrine	40	CNS effects at 10 mg./kg. and higher	68 72	$\frac{400}{300}$
Aminophylline	60	CNS effects at 80 mg./kg. and higher	73b 75	$\frac{2000}{20}$
			-	000

substances with little or no sympathomimetic action. However, the 3-aryl-3-pyrrolidinols did exhibit smooth muscle depressant action similar to that associated with phenylalkanolamines in which the nitrogen atom is substituted with larger alkyl¹⁸ or aralkyl groups.¹⁵ This smooth muscle depressant action was variously selective for the smooth muscle of the bronchioles,

(18) A. M. Lands, E. E. Rickards, V. L. Nash, and K. Z. Hooper, J. Pharmacol. Expl. Therap., 89, 297 (1947).

			blood now
	Increased		through
	coronary flow	Increased blood flow	coronary
	in isolated	through femoral	vascular bed-
	rabbit heart. %	artery-anesthetized dog. %	anesthetized dog, %
No.	aminophylline ^a	aminophylline ^b	aminophylline ^c
10	100	Constrictor	80
20	$<\!20$	Biphasic 50	Not tested
23	80	Constrictor	24
27	200	Constrictor	Not tested
31	100	Constrictor	Flow de-
			creased
34	300	Not tested	Not tested
35a	200	Constrictor	41
36	200	Constrictor	Not tested
44	80	Constrictor	Not tested
49	120	Constrictor	Not tested
50c	500	No activity	200
53	100	Constrictor	Not tested
55	No activity	Constrictor	Not tested
56	No activity	Not tested	Not tested
58	No activity	No activity	Not tested
67	120	50	Not tested
68	400	50	500
72	300	50	Not tested
73b	2000	100	250
75	20	50–100 Biphasic (Dilator first.)	Not tested
78	300	100	Not tested
79b	350	500	Not tested
80b	800	500 50	350
300	300	00	000

 a Total perfused dosage of aminophylline causing 50% maximal effect = 2.0 mg. ^b Total perfused dosage of aminophylline causing 50% maximal effect = 0.4 mg. • Total perfused dosage of aminophylline causing 50% maximal effect = 0.6 mg.

uterus, gut, and the coronary and peripheral vascular system.

Increased blood flow